User Modeling on Twitter with WordNet Synsets and DBpedia Concepts for Personalized Recommendations

Guangyuan Piao
Insight Centre for Data Analytics, NUI Galway
IDA Business Park, Galway, Ireland
guangyuan.piao@insight-centre.org

John G. Breslin
Insight Centre for Data Analytics, NUI Galway
IDA Business Park, Galway, Ireland
john.breslin@nuigalway.ie

ABSTRACT
User modeling of individual users on the Social Web platforms such as Twitter plays a significant role in providing personalized recommendations and filtering interesting information from social streams. Recently, researchers proposed the use of concepts (e.g., DBpedia entities) for representing user interests instead of word-based approaches, since Knowledge Bases such as DBpedia provide cross-domain background knowledge about concepts, and thus can be used for extending user interest profiles. Even so, not all concepts can be covered by a Knowledge Base, especially in the case of microblogging platforms such as Twitter where new concepts/topics emerge everyday.

In this short paper, instead of using concepts alone, we propose using synsets from WordNet and concepts from DBpedia for representing user interests. We evaluate our proposed user modeling strategies by comparing them with other bag-of-concepts approaches. The results show that using synsets and concepts together for representing user interests improves the quality of user modeling significantly in the context of link recommendations on Twitter.

Keywords
User Modeling; Personalization; User Interest Profiles

1. INTRODUCTION
User modeling on Social Web platforms such as Twitter, which aims at building user interest profiles, has been proven to be an important way for capturing user interests from User-Generated Content (UGC). The generated user interest profiles then can be used for dealing with the information overload problem for providing personalized recommendations. Defining a way of representing user interests is an essential step in building user interest profiles. Previous work either used bag-of-words, topic modeling or bag-of-concepts approach to represent user interests. Bag-of-concepts approach uses concepts for representing user interests. For example, given the first sample tweet posted by a user named Bob in Table 1, we know that the user is interested in entities such as dbpedia: The_Black_Keys and dbpedia: The_Wombats. The bag-of-concepts approach has been preferred in recent studies [10] so as to exploit background knowledge of concepts from a Knowledge Base (KB) (defined as the combination of an ontology and instances of the classes in the ontology) for extending user interests. For instance, based on the background knowledge from DBpedia, we can further infer that Bob is interested in dbpedia: Indie rock as both dbpedia: The_Wombats and dbpedia: The_Black_Keys are pointing to dbpedia: Indie rock via the property dbpedia-owl: genre. In what follows, by a concept we mean an entity or category from a KB (e.g., DBpedia) for representing user interests.

Although Knowledge Bases such as DBpedia provide rich semantics from background knowledge for representing and propagating user interests, they cannot cover all existing and emerging concepts. In addition, Knowledge Bases lack full coverage for the lexicographic senses of lemmas, which can be provided by WordNet instead. For example, in the case of the second tweet posted by Bob, we cannot extract any concept from the tweet. To circumvent this drawback, we propose using WordNet synsets and DBpedia concepts together for representing user interests. Synsets in WordNet are unordered sets of synonyms - words that denote the same concept and are interchangeable in many contexts. By doing so, from the second tweet, we can extract synsets such as: $s_1: \{\text{kilometer, kilometre, km, klick (a metric unit of length equal to 1000 meters or 0.621371 miles)\}$ and $s_2: \{\text{drive, ride (a journey in a vehicle (usually an automobile))}\}$, which denote the user interests that would be missed if a concepts-alone approach was used.

Therefore, the goal of the study is to investigate the effectiveness of using WordNet synsets and DBpedia concepts

1. The prefix dbpedia denotes http://dbpedia.org/resource/

2. The prefix dbpedia-owl denotes http://dbpedia.org/ontology/

4. https://wordnet.princeton.edu
together for representing user interests. Proposed user modeling strategies are evaluated in the context of link recommendations on Twitter, by comparing our strategies and bag-of-concepts approaches using concepts alone for user modeling.

2. RELATED WORK

A line of work has been proposed to use concept-based representations of user interests using a KB from Linked Data (e.g., Freebase, DBpedia) [2,8,10]. This line of work goes beyond other approaches, such as bag-of-words [7] and topic modeling [4] which focus on words and cannot provide semantic information and relationships among these words. Abel et al. [1] showed that entity-based user interest profiles perform better than other user modeling strategies such as hashtag- and topic-based user profiles on Twitter in the context of news recommendations. Orlandi et al. [8] investigated entity-based user profiles and category-based user profiles based on the category information of entities from DBpedia. Besides a straightforward extension that gives equal weight to each extended category with respect to an entity, they also proposed a discounting strategy for those extended categories. The results based on a user study showed that category-based user profiles have similar performance to the entity-based ones and both of them outperform the word-based approach as a baseline. On top of that, Piao et al. [10] proposed a mixed approach using entity- and category-based user profiles and presented its effectiveness compared to other user modeling strategies. Our work differs in that we represent user interests using WordNet synsets and DBpedia concepts together instead of using concepts alone. However, as we are using synsets in addition to concepts for representing user interests, interest propagation methods that were developed for concept-based user interests profiles can be applied to our interest profiles in the same way.

3. CONTENT-BASED USER MODELING

Interest Representation. In this work, we use synsets from WordNet and concepts from DBpedia for representing the interests of users. The generic model for interest profiles representing users is specified in Definition 1.

Definition 1. The interest profile of a user \(u \in U \) is a set of weighted WordNet synsets or DBpedia concepts where with respect to the given user \(u \) for an interest \(i \in I \) its weight \(w(u,i) \) is computed by a certain function \(w \).

\[
P_u = \{ (i,w(u,i)) \mid i \in I, u \in U \}
\]

(1)

Here, \(I = \{s_1, \ldots, s_k\} \cup \{c_1, \ldots, c_m\} = \{i_1, \ldots, i_n\} \) denotes the set of synsets in WordNet and concepts in DBpedia, and \(U \) denotes users.

The process of building user interest profiles using our user modeling framework is presented in Figure 1. It consists of three main steps as follows.

Interest Extraction. As we use WordNet synsets and DBpedia concepts for representing user interests, the first step is to extract synsets and concepts from UGC. In the same way from other bag-of-concept approaches, the concepts are extracted using NLP APIs such as the Aylien API\(^a\). To extract WordNet synsets, a WordNet-based Word Sense Disambiguation (WSD) algorithm [3] (see Algorithm 1), which was developed in the context of movie recommendations, has been adapted. This method extracts the WordNet synset for a word in terms of a context. In our scenario, the context of a word \(w \) is the set of words appearing in the same tweet with \(w \) (line 1) and having the same Part-Of-Speech (POS) as \(w \). For a given tweet, our user modeling framework preprocesses with tokenization, POS tagging and lemmatization, and then uses Algorithm 1 for extracting all synsets for words based on their context. The similarity between any two synsets in WordNet is the set of all candidate synsets for all words in \(C \).

Algorithm 1: The WordNet-based WSD algorithm for tweets

\[
\text{input} : \text{a polysemous word } w \text{ in a tweet } t \hspace{1cm} \text{output} : \text{the proper synset of } w
\]

1. \(C \leftarrow \{w_1, \ldots, w_a\}; \) // \(C \) is the context of \(w \), i.e., other words in \(t \) with \(w \)
2. \(X \leftarrow \{s_1, \ldots, s_k\}; \) // \(X \) is the set of candidate synsets for \(w \) returned by WordNet
3. \(s \leftarrow \text{null}; \) // \(s \) is the synset to be returned
4. \(\text{score} \leftarrow 0; \) // \(\text{score} \) is the similarity score assigned to \(s \) regarding the context \(C \)
5. \(T \leftarrow \emptyset; \) // \(T \) is the set of all candidate synsets for words in \(C \)
6. for \(w_j \in C \) do
7. \(\text{if } \text{POS}(w_j) = \text{POS}(w) \) then
8. \(X_j \leftarrow \{s_{j1}, \ldots, s_{jm}\}; \)
9. \(T \leftarrow T \cup X_j; \)
10. for \(s_i \in X \) do
11. \(\text{for } s_h \in T \) do
12. \(\text{score}_{ih} \leftarrow \text{SINSIM}(s_i, s_h); \) // computing similarity scores between \(s_i \) and every synset \(s_h \in T \)
13. \(\text{if } \text{score}_{ih} \geq \text{score} \) then
14. \(\text{score} \leftarrow \text{score}_{ih}; \)
15. \(s \leftarrow s_i; \) // \(s \) is the synset \(s_i \in X \) having the highest similarity score regarding the synsets \(T \)
16. return \(s \)

\(\text{SINSIM}(s_a, s_b) = -\log(N_p/2D) \)

(2)

where \(N_p \) is the number of nodes in the shortest path \(p \) from \(s_a \) and \(s_b \), and \(D \) is the maximum depth of the taxonomy.

Weighting Scheme. We use the Term Frequency - Inverse Document Frequency (TF-IDF) as the weighting scheme for synsets and concepts: \(w(u,i) = f(u,i) \times \log \frac{M}{m_i} \), where

\(http://aylien.com/\)

\[f(u, i) \] denotes the frequency of a synset or concept \(i \) in a user’s tweets, \(M \) is the total number of users, and \(m_i \) is the number of users interested in \(i \) (i.e., who mentioned \(i \) in their tweets). Finally, we further normalize user interest profiles so that the sum of all weights in a profile is equal to 1: \(\sum_{i \in I} w(u, i) = 1 \).

Interest Propagation. As we are using both WordNet synsets and DBpedia concepts for user modeling, we can exploit background knowledge from DBpedia with respect to the extracted concepts for propagating user interests using existing methods. We use an extension strategy using category information from DBpedia for concepts with a discounting strategy for the extended interests as follows [10]:

\[
\text{Category Discount} = \frac{1}{\alpha} \times \frac{1}{\log(SP)} \times \frac{1}{\log(SC)} \tag{3}
\]

where: \(SP = \text{Set of Pages belonging to the Category} \), \(SC = \text{Set of Sub-Categories} \). \(SP \) and \(SC \) discount the category in the context of DBpedia. Thus, an extended category is discounted more heavily if it is a general one (i.e., the category has a great number of pages or sub-categories). In addition, \(\alpha \) is a parameter for discounting the extension from original user interest profiles (we set \(\alpha = 2 \) as in [10]).

4. **EXPERIMENTAL EVALUATION**

Our main goal here is to analyze and compare the different user modeling strategies in the context of link recommendations. We do not aim to optimize the recommendation quality, but are interested in comparing the quality achieved by the same recommendation algorithm when inputting user profiles based on different user modeling strategies. In the same way as in existing literature, we adopt a lightweight content-based algorithm where the recommendation algorithm recommends links according to their cosine similarity with a given user profile [1,10].

Definition 2. Recommendation Algorithm: given a user profile \(P_u \) and a set of candidate links \(N = \{P_1, ..., P_m\} \), which are represented via profiles using the same vector representation, the recommendation algorithm ranks the candidate items according to their cosine similarity to the user profile.

Dataset. The dataset used in this experiment is from [10]. The Twitter dataset includes all tweets published by 480 active users on Twitter (a user is active if the user published at least 100 posts [6,10]). The main details of the dataset are presented in Table 2. We further selected users who shared at least one link (URL) in their tweets during the last two weeks. We only consider links from 322 users, as well as the links shared by other users but not shared by 322 users in the dataset, for constructing candidate links. In total, the ground truth of links consists of 3,959 links, and the candidate set of links consists of 15,440 distinct links. Tweets older than two weeks (i.e., excluding those from the last two weeks, as used for ground truth), were used for constructing user profiles.

Table 2: Dataset statistics

# of users	480
total # of tweets	348,554
average time span of tweets per user (days)	471
average # of tweets per user	726
average # of tweets per user per day	7.2

We will focus on the top-10 list of recommendations for success, recall and precision as our recommendation system will list 10 link recommendations to a user. The bootstrapped paired \(t \)-test, which is an alternative to the paired \(t \)-test when the assumption of normality of the method is in doubt, is used for testing the significance where the significance level was set to 0.05 unless otherwise noted.

4.2 **Results**

To evaluate whether our new synset & concept-based user interest profiles outperform concept-based profiles, we use the concept-based user interest profiles \(P(\text{concept}) \) [1] and extended \(P(\text{concept}) \) using background knowledge from DBpedia \(P(\text{synset}\&\text{concept}) \) [10] as two baselines. Our approach is represented as \(P(\text{synset}\&\text{concept}) \), which uses synset and concepts for representing user interests. In addition, the synset & concept-based user interest profiles extended with background knowledge are denoted as \(P(\text{synset}\&\text{concept}\&\text{category}) \).

The results of link recommendations based on different user modeling strategies in terms of aforementioned four different evaluation metrics are presented in Figure 2. As we can see from the figure, there is a significant improvement for \(P(\text{synset}\&\text{concept}) \) and \(P(\text{synset}\&\text{concept}\&\text{category}) \) compared to the concept-based approaches \(P(\text{concept}) \) and \(P(\text{concept}\&\text{category}) \), \(p < 0.05 \). For example, the quality of recommendations is improved by \(P(\text{synset}\&\text{concept}) \)

6https://www.swarmapp.com
56% and 61% in terms of S@10 and MRR, 77% and 87% in terms of P@10 and R@10, compared to using P(concept). Similarly, using P(synset & concept + category) improves the recommendation performance 11% and 15% in terms of S@10 and MRR, 20% and 19% in terms of P@10 and R@10 compared to using P(concept + category). This indicates that using synsets and concepts together is beneficial for user modeling on Twitter instead of using concepts alone.

It is also interesting to observe that P(synset & concept), which uses synsets and concepts together without any interest propagation, has competitive performance compared to the one using the same interest representation and propagating interests with background knowledge (P(synset & concept + category)).

5. CONCLUSIONS
In this paper, we were interested in examining if using synsets from WordNet and concepts from DBpedia for representing user interests can improve the quality of user modeling on Twitter. We presented our user modeling strategies using both synsets and concepts and evaluated them by comparing to other concept-based strategies in the context of link recommendations on Twitter. The study results showed that using synsets and concepts together for representing user interests improves the quality of user modeling significantly. In addition, user profiles with a rich interest representation without any interest propagation \((P(synset & concept))\) can provide competitive performance compared to \(P(synset & concept + category)\). Future studies will focus on investigating user modeling strategies considering other dimensions (e.g., temporal dynamics of user interests) together [9].

6. ACKNOWLEDGMENTS
This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289 (Insight Centre for Data Analytics).

7. REFERENCES