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Abstract. With the popularity of Knowledge Graphs (KGs) in recent
years, there have been many studies that leverage the abundant back-
ground knowledge available in KGs for the task of item recommendations.
However, little attention has been paid to the incompleteness of KGs
when leveraging knowledge from them. In addition, previous studies have
mainly focused on exploiting knowledge from a KG for item recommenda-
tions, and it is unclear whether we can exploit the knowledge in the other
way, i.e, whether user-item interaction histories can be used for improving
the performance of completing the KG with regard to the domain of items.
In this paper, we investigate the effect of knowledge transfer between
two tasks: (1) item recommendations, and (2) KG completion, via a co-
factorization model (CoFM) which can be seen as a transfer learning model.
We evaluate CoFM by comparing it to three competitive baseline methods
for each task. Results indicate that considering the incompleteness of a
KG outperforms a state-of-the-art factorization method leveraging exist-
ing knowledge from the KG, and performs better than other baselines. In
addition, the results show that exploiting user-item interaction histories
also improves the performance of completing the KG with regard to the
domain of items, which has not been investigated before.

1 Introduction

Knowledge Graphs (KGs) such as DBpedia [16] and Wikidata [35] have received
great attention in the past few years. KGs provide a great amount of knowl-
edge which can be used in different applications such as inferring user interest
profiles [15], personalization of digital health for individuals [34], and recom-
mender systems [17,20]. For instance, DBpedia provides cross-domain background
knowledge about entities/things, and the latest version of this KG describes 4.58
million things including 87,000 movies. Fig. 1 shows pieces of information about
the entity dbr1:Bled White (2011 film), which can be retrieved from DBpedia
using SPARQL2 queries through the SPARQL endpoint for DBpedia3. Each piece

1The prefix dbr denotes http://dbpedia.org/resource/
2https://www.w3.org/TR/rdf-sparql-query/
3http://dbpedia.org/sparql
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dbr:Bled_White_(2011_film) 

dbr:Jose_Carlos_Gomez dbc:Horror_films 

dbo:director dc:subject 

dbr:Colleen_Boag 

dbo:starring 

Fig. 1: Pieces of information about the movie dbr:Bled White (2011 film)

from DBpedia. The piece of information with dotted lines denotes missing
information from the knowledge graph.

of information about an entity in DBpedia is a RDF4 triple, which consists of a
subject, predicate, and object (e.g., dbr:Bled White (2011 film), dbo:starring,
dbr:Colleen Boag in Fig. 1). With the freely accessible knowledge from KGs
such as DBpedia, a big effort has been made in order to consume the knowledge
for intelligent or adaptive systems such as recommender systems [3, 21]. The
focus of existing studies leveraging KGs for recommender systems has been
on exploiting KG-enabled features for different types of machine learning or
graph algorithms. Although previous studies have shown some useful insights
about leveraging background knowledge about items from KGs for recommender
systems, most of these studies have not considered the incompleteness of KGs.

Despite the fact that KGs provide billions of machine-readable facts about
entities, they are far from complete [9], and a dedicated line of research has
focused on the task of KG completion [6, 8]. Indeed, most KGs use the Open
World Assumption, i.e., it is not necessarily false if a KG does not contain
a certain piece of information. The piece of information may be true but is
missing from the KG. For example, the piece of information with dotted lines
in Fig. 1 shows that the category dbc5:Horror films is missing for the entity
dbr:Bled White (2011 film) in DBpedia, which is important information in the
context of recommending movies. Most previous studies that exploit KG-enabled
features for item recommendations were based on the existing knowledge of KGs,
and did not incorporate the incompleteness of KGs. In addition, these studies
have focused on leveraging knowledge in one direction, i.e., from KGs to the task
of item recommendations. Therefore, it is not clear that whether the knowledge
from item recommendations, user-item interaction histories, can be transferred
to the KG completion task with respect to the domain of items.

In this paper, we leverage a co-factorization model to investigate transfer
learning [27] between these two tasks: (1) item recommendations, and (2) KG
completion with respect to the domain of items. Here, transfer learning denotes
using one task as a “source” task and the other as a “target” task. First, with item
recommendations as the target task and KG completion as the source task, we are
interested in whether incorporating the incompleteness of a KG performs better
when compared to a state-of-the-art approach using a Factorization Machine (FM)
which exploits existing knowledge from the KG, and outperforms other baselines.

4https://www.w3.org/RDF/
5The prefix dbc denotes http://dbpedia.org/resource/Category
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Second, we aim to investigate whether the knowledge can be transferred from
item recommendations to the KG completion and improves the performance
when KG completion is the target task. We use DBpedia as our KG in this study,
which has been widely used for KG-enabled recommender systems. In summary,
our contributions are as follows:

– We study knowledge transfer between two tasks: (1) item recommendations,
and (2) KG completion for the specific domain of items, via a co-factorization
model (CoFM). This transfer learning model incorporates the incompleteness
of a KG for item recommendations, and incorporates the knowledge from
item recommendations for completing the KG (Sect. 3).

– In Sect. 5, we evaluate CoFM with three baselines for each task, and show
that incorporating the incompleteness of KG outperforms the baselines
significantly. In addition, we show that exploiting the knowledge from item
recommendations improves the performance of KG completion with respect
to the domain of items, which has not been studied in previous studies.

2 Related Work

In this section, we review some related work on (1) exploiting KGs for item
recommendations, and (2) KG completion.

Exploiting knowledge graph for item recommendations. With the
popularity of Linked Open Data (LOD), much research work has been done in or-
der to leverage the background knowledge from LOD (mainly from open KGs such
as DBpedia) for items with different purposes with respect to recommender sys-
tems, e.g., for improving recommendation performance [4,13,17,18,20,22,25,30,37],
for explaining recommendations [19], and for cross-domain recommendations [12].
Various approaches have been investigated for LOD-enabled Recommender
Systems (LODRecSys) with aims at improving the recommendation perfor-
mance, such as semantic similarity/distance measures for measuring the similar-
ity/distance of two entities in the same domain [28, 29], applying graph-based
algorithms by incorporating background knowledge of items from KGs [18,20,22],
and feeding KG-enabled features into different types of machine learning ap-
proaches [4, 25,30]. A detailed review on LODRecSys can be found in [7, 10].

More recently, Zhang et al. [37] used the sum of several embeddings of an
item with respect to structural, textual, and visual knowledge from a KG in
addition to the item embedding learned from user-item interactions for item
recommendations. However, the loss functions for item recommendations and KG
completion have the same weight which might not be optimal for the target task,
and the knowledge transfer from item recommendations to the KG completion task
was not investigated. Piao et al. [30] proposed using a FM with lightweight LOD
features which can be directly obtained from the DBpedia SPARQL endpoint
such as the predicate-object lists and PageRank [26] scores of items. In [30],
the authors also showed that their approach outperforms baseline methods
such as BPRMF [32] and a state-of-the-art approach, which uses learning-to-rank
algorithms for consuming KG-enabled features [25]. We use the FM approach
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of [30], which consumes the existing knowledge from a KG without considering
the incompleteness of the KG, as one of our baselines.

Knowledge graph completion. Although KGs provide large amounts
of facts about entities/things, they are highly incomplete [9]. For instance,
Google observed that 71% of people in Freebase [1] lack a place of birth, and
75% lack a nationality [5]. To tackle the problem, two groups of embedding-
based approaches have been proposed. One is using factorization approaches
such as tensor factorization [2,6,23,24], and the other is using neural network
models [11, 14, 36]. A typical work is TransE [2], which is a translation-based
model for learning embeddings of entities and the relationships between them.
The main idea of TransE is based on the assumption that if (s, p, o) is a valid
triple, then the sum of embeddings for s and p should be close to the embedding
of o. Drumond et al. [6] showed that using PITF (Pairwise Interaction Tensor
Factorization) [33] is highly successful in predicting incomplete triples in KGs
compared to other canonical decomposition approaches such as the one from [8].

Our work differs from previous work on KG completion as we focus on whether
the knowledge transferred from user-item interaction histories in the task of item
recommendations improves the KG completion performance with respect to the
specific domain of items.

3 Learning with a Co-Factorization Model

In this section, we first formulate the two tasks - (1) item recommendations, and
(2) KG completion, and then describe state-of-the-art approaches for each task
in Sections 3.1 and 3.2, respectively. Finally, we present a co-factorization model
(CoFM) for transfer learning between these two tasks in Sect. 3.3.

– Item recommendations (task#1): Given user-item interaction histories, i.e.,
likes or dislikes about items (we consider binary interactions in this study),
our goal is to provide the top-N item recommendations for a target user.

– KG completion (task#2): This task can be formulated into a top-N recom-
mendations task as well, in the same way as previous studies [6, 14]. For a
given (subject, predicate) pair, the task is providing the top-N object recom-
mendations from a set of candidate objects. Candidate objects are all objects
in the range of a given predicate defined in the DBpedia ontology.

3.1 Factorization Machines for Item Recommendations

We use FMs for item recommendations. It is a state-of-the-art framework for
latent factor models, and has been widely used for collaborative filtering tasks.
The FM model of order d = 2 is defined as:

ŷFM (x) = w0 +

q∑
i=1

wixi +

q∑
i=1

q∑
j>i

< vi, vj > xixj (1)
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where ŷFM (x) denotes the predicted score using FMs, w0 denotes the weight for a
bias term, x represents feature values, and v represents the latent factors of each
feature. In addition, w0 ∈ R, x and w ∈ Rq, vi ∈ Rm, m is the dimensionality of
the factorization, and q is the number of features. The first part of the FM model
is similar to a simple linear regression, which captures the interactions of each
input variable xi. In addition, the second part of the model captures all pairwise
interactions of input variables xixj using the latent factors of features. As a
general framework, FMs can mimic many state-of-the-art latent factor models
such as BPRMF [32] and PITF [33], which has been shown in a previous study [31].
For a more detailed description of FMs, please refer to Rendle [31].

The first task is to provide the top-N item recommendations based on the
history of user-item interactions. We focus on a binary response ydui

(e.g., a user
u likes or dislikes an item i) of each item in this study. Let β0 denote the bias,
βi denote the weights of features with respect to i, and θi denote a list of latent
factors for i, which can be learned through FMs with the training dataset. In
addition, xdui

denotes a list of explicit features in a training example dui. The
simplest case for xdui

is that it consists of one categorical feature to denote a user
u, and the other categorical feature to denote an item i. Following the definition
of the FM model (Eq. 1), we can estimate the preference score of an item i based
on xdui

, β and Θ as f(sdui
|xdui

,β,Θ), where

sdui = β0 + βu + βi+ < θu,θi > (2)

The task of recommending the top-N items can be formalized as optimizing the
Bayesian Personalized Ranking (BPR) [32] loss as follows:

`(a1, a2) =
∑

a1∈D+
ui

∑
a2∈D−ui

− log[δ(sa1
− sa2

)] (3)

where δ is a sigmoid function: δ(x) = 1
1+e−x , and D+

ui and D−ui denote the set of
positive and negative training instances, respectively. In detail, a positive training
instance consists of a user and an item which the user liked in the training dataset.
On the other hand, a negative instance for the user consists of the user and a
randomly chosen item which is not in the list of items the user liked before in
the training set. The intuition behind BPR is that a liked item for a user should
be ranked higher (with a higher score) compared to a random one in the list
of items with which the user has not interacted. In fact, the FM using BPR for
optimization with users and items as features, is exactly a biased BPRMF [32],
which has been shown in the previous study [31].

3.2 Translating Embeddings for KG Completion

The second task is the KG completion with respect to the domain of items,
which can be formulated as object recommendations given a subject and predicate
pair [6]. We use a translation-based embedding model, TransE [2], for the second
task. TransE is one of the most popular approaches for KG completion due to
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its effectiveness despite its simplicity. The intuition behind this model is to learn
latent factors for subjects, predicates, and objects, in order to satisfy φs +φp ≈ φo

when (s, p, o) is a valid triple in the KG. In other words, for a valid triple (s, p, o),
we want to make the embedding of o (φo) be the nearest neighbor of φs + φp

where the distance is measured by a dissimilarity function d(φs + φp,φo) such
as L2-norm. Therefore, the prediction score of a candidate o for given (s, p) can
be measured as follows when L2-norm is used as the dissimilarity function:

s′dspo
=

√√√√ m∑
j=1

(φsj + φpj
− φoj )2 (4)

where m denotes the dimensionality of the factorization/embedding for s, p, and
o. Afterwards, the candidate set of objects can be ranked by their prediction
scores, where an object with a higher distance score should be ranked lower. The
loss to be optimized in TransE can be defined as below in our settings [2]:

`(b1, b2) =
∑

b1∈D+
spo

∑
b2∈D−spo

[γ + s′b1 − s
′
b2 ]+ (5)

where D+
spo and D−spo denote the set of positive and negative training instances,

respectively. Here, a positive instance denotes a valid triple (s, p, o), which can be
found in the training set, and a negative instance consists of s, p, and a randomly
chosen object o− which does not exist in the training set. [x]+ = 0 for x < 0,
and x otherwise, and γ is a margin hyperparameter. In the same way as [2], we
set γ to 1.0, and use L2-norm as our dissimilarity function.

3.3 Transfer Learning via a Co-Factorization Model for the Two
Tasks

As we can see from Eq. 2 and 4, we have two related representations for the latent
factors of an item i in task#1 (or subject s in task#2), i.e., θi and φs, in the
context of the two different tasks. In this work, we investigate two strategies for
modeling the relationship between the two representations of items/subjects for
transfer learning between the two tasks. For the sake of simplicity, we consider
simple cases of xdui

, i.e., two categorical features (to denote u and i) for xdui
.

Shared latent space (CoFMA). A straightforward approach to model the
relationship between two representations for the latent factors of an item/subject
in the two tasks is to assume that their latent factors are exactly the same,
i.e., θi = φs = ρis, where ρis is the same latent factor for both. Given this
assumption, the preference score functions (Eq. 2 and 4) for the aforementioned
two tasks can then be re-written as:

sdui = β0 + βu + βi+ < θu, ρis >, s′dspo
=

√√√√ m∑
j=1

(ρisj + φpj − φoj )2 (6)
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This approach is based on a strong assumption that an item and a subject from
the two different tasks have the same latent representation.

Via latent space regularization (CoFMR). An alternative approach to
work with the two latent representations of an item/subject is regularizing
these representations to make them not reside too far away from each other. We
incorporate this intuition into the model by imposing the following regularization:

λφ,θ‖φs − θi‖2F (7)

where λφ,θ is a regularization parameter.
Another issue for transfer learning between the two tasks is the different

output scales of the two loss functions: Eq. 3 and 5. Hence, we modify the loss
function of the KG completion task (Eq. 5) as follows in order to make both loss
functions in the two tasks have the same scale.

`(b1, b2) =
∑

b1∈D+
spo

∑
b2∈D−spo

− log[δ(γ + s′b1 − s
′
b2)]+ (8)

Summary. Putting everything together, our co-factorization model in the
view of transfer learning can be formulated as follows:

Opt(CoFM) : Opt(T ) + ε×Opt(S), (9)

Opt(T ) = arg min
∑

dT∈DT

`T (·), Opt(S) = arg min
∑

d′S∈D′S

`S(·)

where ε is a transfer (auxiliary) parameter to denote the importance of the
knowledge transfer from the source task (S ) to the target task (T ). Let DT

and DS denote the original training instances in the target and source tasks,
respectively. D′S is a set of training instances that is randomly sampled from DS

in order to match the size of DT , i.e., |DT | = |D′S |. For each instance dT ∈ DT ,
we choose an instance d′S randomly with a replacement from DS where the
item in dT is the same as the subject in d′S , i.e., dT (i) = d′S(s). With the same
size for both T and S, we then use the well-known Stochastic Gradient Decent
(SGD) to learn the parameters in the CoFM. An overview of the algorithm to
optimize Eq. 9 using SGD is presented in Algorithm 1 when the target task is
item recommendations. Our approach can be seen as a transfer learning [27]
model as we are transferring knowledge between two different but related tasks
in the same domain. It is worth noting that, in contrast to multi-task learning
which aims to learn both tasks simultaneously, transfer learning aims to achieve
the best performance for T with the transferred knowledge from S.

4 Experiment Setup

Here we describe our evaluation metrics (Sect. 4.1), the datasets for our experiment
(Sect. 4.2), and the methods we compared for evaluating our approach (Sect. 4.3).
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Algorithm 1: Main elements of the algorithm to optimize Eq. 9 using SGD
when the target task T is item recommendations.

input : training datasets Dui and D′
spo with the same size of |D|, initialized

parameters for CoFM
output : learned parameters for CoFM
repeat

for dui in Dui do
Optimize Opt(T) for θu,θi,β

perform SGD for BPR loss function in terms of dui
Select d′spo in D′

spo where d′spo(s) = dui(i)
Optimize Opt(S) for φs,φp,φo

perform SGD for BPR loss function in terms of d′spo

until converged ;

4.1 Evaluation Metrics

The recommendation performance was evaluated via five evaluation metrics that
have been widely used in previous studies as below. We describe these metrics in
the context of item recommendations for users.

– MRR: MRR (Mean Reciprocal Rank) is the average of the reciprocal ranks

of relevant items for users. It can be measured as: MRR = 1
|U |

∑|U |
k=1

1
rankk

,

where U denotes the set of users, and rankk refers to the rank position where
the first relevant item with respect to a user u ∈ U occurs.

– MAP: MAP (Mean Average Precision) measures the mean of the average
precision scores (AP) of liked items of all users. The average precision of

a user u is defined as: APu =
∑N

n=1 P@n×like(n)
|I| , where n is the number of

items, |I| is the number of liked items of u, and like(n) is a binary function
to indicate whether the user prefers the n-th item or not.

– P@N: P@N = |{relevant items@N}|
N (Precision at rank N) is the proportion

of the top-N recommendations that are relevant to the user.

– R@N: R@N = |{relevant items@N}|
|{relevant items}| (Recall at rank N) represents the mean

probability that relevant items are successfully retrieved within the top-N
recommendations.

– nDCG@N: nDCG (Normalized Discounted Cumulative Gain) takes into
account rank positions of the relevant items, and can be computed as follows:

nDCG@N = 1
IDCG@N

∑N
k=1

2r̂uk−1
log2(k+1) where r̂uk is the relevance score of the

item at position k with respect to a user u in the top-N recommendations,
and IDCG@N denotes the score obtained by an ideal top-N ranking.

In the same way as [30], we use the bootstrapped paired t-test for testing the
significance. The significance level of α is set to 0.05 unless otherwise noted.
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4.2 Dataset

We use two datasets in the movie and book domains, which have been widely
used in LODRecSys [18,25,30].

– Movielens dataset [25]. The dataset is a refined Movielens dataset6 for
LODRecSys. It consists of users and their ratings about movies, and each of
the items in this dataset has been mapped into DBpedia entities if there is a
mapping available7. In the same way as previous studies [25, 30], we consider
ratings higher than 3 as positive feedback and others as negative ones.

– DBbook dataset. The dataset8 consists of users and their binary feedback
(1 for likes, and 0 otherwise), where the items have been mapped to DBpedia
entities if there is a mapping available.

Table 1 shows the main details of user-item interactions and RDF triples in
the two datasets. There are 3,997 users and 3,082 items with 827,042 ratings in
the Movielens dataset. The DBbook dataset consists of 6,181 users and 6,733
items with 72,372 interactions. The sparsity of the DBbook dataset (99.38%) is
higher than that of the Movielens dataset (93.27%). For item recommendations,
we use 80% and 20% of each dataset for training and test sets where 20% of the
training set was used for validation. In addition, all of the items were considered
as candidate items for recommendations in the same way as [25] instead of
considering only “rated test-one” evaluation. The second part of Table 1 shows
the details of extracted triples for items/subjects in the two datasets from the
DBpedia SPARQL endpoint. In the Movielens dataset, 2,952 out of 3,082 (95.8%)
items have at least one triple. There are 21 distinct predicates and 18,550 objects
in the Movielens dataset, which results in 81,835 triples in total. In the case
of DBbook dataset, 6,211 out of 6,733 (92.2%) items have at least one triple.
There are 36 distinct predicates and 16,476 objects in the DBbook dataset, which
results in 72,911 triples in total. For KG completion with respect to the domain
of items, we adopt the same splitting strategy as [6] for constructing training
and test sets. We randomly choose a subject and predicate pair (s, p) for a given
s, and then use all triples containing the pair to construct the test set. The other
triples with the same subject were put into the training set.

We repeated five times by sampling new training and test sets for the two
tasks using the aforementioned strategies, and applied different methods to them.
The results in Section 5 are based on the averages over five runs.

4.3 Compared methods

We use CoFMA to denote the CoFM which shares latent space with the assumption
that two latent factors of an item/subject in the two tasks are exactly the same,

6https://grouplens.org/datasets/movielens/1m/
7http://sisinflab.poliba.it/semanticweb/lod/recsys/datasets/
8http://challenges.2014.eswc-conferences.org
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Table 1: Statistics of Movielens and DBbook datasets.
Movielens DBbook

statistics of
user-item
interactions

# of users 3,997 6,181
# of items 3,082 6,733
# of ratings 827,042 72,372
avg. # of ratings 206 12
sparsity 93.27% 99.38%
% of positive ratings 56% 45.85%

statistics of
RDF triples

# of subjects 2,952 (3,082) 6,211 (6,733)
# of predicates 21 36
# of objects 18,550 16,476
# of triples 81,835 72,911

and use CoFMR to denote the CoFM which uses regularization for modeling the
relationship between the two latent factors of an item/subject in the two tasks.

Parameter settings of CoFM. The transfer (auxiliary) parameter ε was
determined by a separate validation set randomly retrieved from 20% of the
training set for the first run in terms of the loss on the target task in each
dataset. According to the results, ε was set to 0.05 for the Movielens dataset
when either KG completion or item recommendations is the target task. For
the DBbook dataset, ε was set to 0.05 and 1.0 when KG completion and item
recommendations is the target task, respectively. In addition, we set the same
value for all regularization parameters in our approach for the sake of simplicity.
λ = 0.01 when item recommendations is the target task, and λ = 0.001 when KG
completion is the target one. The dimensionally value m was set to 64, which is
the same as in [6], for all factorization-based approaches.

We compare CoFM against the following methods for item recommendations.

– kNN-item (kNN): kNN-item is an item-based k -nearest neighbors algorithm.
We use a MyMedialiite9 implementation for this baseline where k = 80.

– BPRMF [32]: BPRMF is a matrix factorization approach for learning latent
factors with respect to users and items, optimized for BPR. BPRMF can be seen
as the model for item recommendations in CoFM, which is a FM model without
transferring knowledge from the KG completion task.

– FMLOD [30]: FMLOD exploits lightweight KG-enabled features about items from
DBpedia, which can be obtained directly from its SPARQL endpoint.

For the KG completion task, we compare CoFM against the following methods:

– MFPP: Most Frequent Per Predicate (MFPP) is a baseline method which
recommends the objects that co-occur most frequently with the predicate p
given a subject s and predicate pair (s, p).

– PITF [33]: This model has been proposed in [33] for tag recommendations.
In [6], the authors applied a PITF model optimized for the BPR criterion,

9http://www.mymedialite.net/
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which captures the interactions among subjects, predicates, and objects of
RDF triples. We re-implement this approach under the framework of FMs.

– TransE [2]: This is a translation-based approach which models relationships
by interpreting them as translations operating on the entity embeddings.
We re-implemented this approach based on the parameters from [2]. As one
might expect, TransE can be seen as the model for the KG completion task
in CoFM without transferring knowledge from item recommendations.

We use SGD to learn the parameters in the aforementioned factorization models.

5 Results

Table 2 shows the results of comparing CoFM with the aforementioned methods
in each task on the Movielens and DBbook datasets. Overall, CoFM provides the
best performance compared to other approaches in item recommendations as
well as KG completion in both datasets. As we can see from Table 2(a), CoFMR
provides the best performance, and improves the recommendation performance
significantly (α < 0.01) compared to kNN and BPRMF for item recommendations
on the Movielens dataset. Similarly, CoFMR outperforms baselines such as MFPP

and PITF significantly for KG completion. In detail, a significant improvement
of CoFMR over PITF in MRR (+21%), MAP (+15%), nDCG@5 (+19.8%), P@5
(+31.2%), and R@5 (+8.2%) can be noticed. On the DBbook dataset (Table 2(b)),
CoFMA provides the best performance instead of CoFMR. CoFMA outperforms kNN

and BPRMF significantly for item recommendations, and outperforms MFPP and
PITF for the KG completion task (α < 0.01). One of the possible explanations for
the observation that the best performance is achieved by CoFMR for the Movielens
dataset and by CoFMA for the DBbook one might be due to the different sparsity
levels of the two datasets. As we can see from Table 1, the DBbook dataset
has higher sparsities compared to the Movielens dataset for both tasks. CoFMA,
which can be seen as having strong knowledge transfer with the assumption that
item/subject embeddings in the two tasks are the same, may possibly be more
useful for this sparse dataset and leads to better performance.

FMLOD vs. CoFM. We observe that CoFMR, which incorporates the incompleteness
of DBpedia, outperforms FMLOD which leverages existing knowledge from DBpedia
on the Movielens dataset. A significant difference between the two approaches
in terms of all evaluation metrics can be noticed (α < 0.01). On the DBbook
dataset, CoFMA also consistently outperforms FMLOD in terms of all evaluation
metrics specifically in terms of precision, e.g., +8.3% of P@5, +8% of P@10, and
+5.6% of P@20 (α < 0.01). The results show that incorporating the incompleteness
of the KG improves the performance of item recommendations significantly.

With vs. Without knowledge transfer. We now look at the results of
CoFM with and without transferring knowledge between the two tasks. BPRMF and
TransE can be seen as the CoFM without transferring knowledge between these
tasks. On the Movielens dataset, CoFMR improves the performance by 2.3%-5.2%
compared to BPRMF for item recommendations (α < 0.01). Regarding the KG
completion task, CoFMR outperforms TransE significantly for all evaluation metrics
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Table 2: Results of KG completion and item recommendations on the Movielens
(a) and DBbook (b) datasets. S denotes source task while T denotes target task.
The gray cells denote significant improvement over the best-performing baseline.

(a) Movielens

S : KG completion
T : item recommendations

S : item recommendations
T : KG completion

kNN BPRMF FMLOD CoFMA CoFMR MFPP PITF TransE CoFMA CoFMR

MRR 0.510 0.594 0.609 0.602 0.622 0.183 0.266 0.317 0.302 0.322

MAP 0.181 0.218 0.224 0.220 0.227 0.090 0.193 0.217 0.208 0.222

nDCG@5 0.358 0.425 0.436 0.429 0.445 0.149 0.248 0.292 0.279 0.297

P@5 0.291 0.355 0.366 0.360 0.372 0.070 0.096 0.123 0.126 0.126

R@5 0.075 0.097 0.100 0.098 0.102 0.103 0.230 0.241 0.240 0.249

nDCG@10 0.440 0.500 0.510 0.504 0.518 0.171 0.273 0.311 0.299 0.316

P@10 0.258 0.307 0.314 0.310 0.318 0.046 0.064 0.077 0.081 0.079

R@10 0.129 0.161 0.165 0.164 0.170 0.149 0.271 0.277 0.280 0.283

nDCG@20 0.583 0.645 0.653 0.648 0.660 0.194 0.297 0.331 0.321 0.336

P@20 0.218 0.252 0.257 0.254 0.259 0.031 0.042 0.047 0.051 0.048

R@20 0.213 0.257 0.261 0.260 0.265 0.199 0.311 0.313 0.318 0.319

(b) DBbook

S : KG completion
T : item recommendations

S : item recommendations
T : KG completion

kNN BPRMF FMLOD CoFMA CoFMR MFPP PITF TransE CoFMA CoFMR

MRR 0.015 0.115 0.121 0.125 0.100 0.168 0.383 0.408 0.412 0.412

MAP 0.011 0.077 0.081 0.083 0.065 0.152 0.321 0.340 0.345 0.343

nDCG@5 0.008 0.105 0.110 0.114 0.091 0.162 0.372 0.399 0.410 0.400

P@5 0.003 0.034 0.036 0.039 0.031 0.048 0.111 0.117 0.119 0.119

R@5 0.010 0.096 0.101 0.106 0.085 0.177 0.363 0.377 0.380 0.381

nDCG@10 0.014 0.125 0.131 0.134 0.108 0.181 0.389 0.416 0.423 0.416

P@10 0.004 0.024 0.025 0.027 0.022 0.031 0.064 0.067 0.068 0.067

R@10 0.023 0.135 0.141 0.147 0.116 0.220 0.396 0.406 0.408 0.408

nDCG@20 0.022 0.145 0.153 0.156 0.126 0.203 0.404 0.428 0.434 0.430

P@20 0.004 0.017 0.018 0.019 0.015 0.021 0.037 0.037 0.038 0.038

R@20 0.043 0.187 0.196 0.198 0.138 0.279 0.428 0.433 0.435 0.436

as well. On the DBbook dataset. CoFMA improves the performance by 5.9%-14.7%
compared to BPRMF for item recommendations. For the KG completion task, CoFMA
outperforms TransE significantly in terms of all evaluation metrics except R@10.
This indicates that transferring knowledge between the two tasks improves the
performance on both tasks compared to each single model without transferring
knowledge from the other task.

With vs. Without tuning the transfer parameter ε. Fig. 2 shows the
results of item recommendations on the Movielens dataset using CoFMR with a
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Fig. 2: The performance of item recommendations on the Movielens dataset with
ε = 0.05 and ε = 1.0 using CoFMR .

tuned value for the parameter ε (ε = 0.05) and without tuning the parameter
(ε = 1.0). As we can see from the figure, tuning the transfer value ε plays an
important role in achieving the best performance for the target task.

To sum up, the implications of these results are twofold. With a proper
transfer parameter, (1) incorporating the incompleteness of a KG can improve
the performance of item recommendations, and (2) the knowledge from item
recommendations, i.e., user-item interaction histories can also be transferred to
the task of KG completion with respect to the domain of items, which improves
the performance significantly.

6 Conclusions

In this paper, we investigated the effect of transferring knowledge between two
tasks: (1) item recommendations, and (2) knowledge graph completion with respect
to the domain of items. Compared to previous approaches, which directly leverage
the existing background knowledge in a KG, the transfer learning model CoFM
incorporates the incompleteness of a KG into the design of CoFM. The experimental
results are promising and suggest that incorporating the incompleteness of a KG
improves the recommendation performance significantly compared to a state-of-
the-art FM approach, which uses existing knowledge from a KG, and outperforms
other baselines as well. In addition, we further explored potential synergies
that transfer knowledge from item recommendations, i.e., user-item interaction
histories to the task of KG completion, which has not been explored in previous
studies. Results indicate that the knowledge from user-item interaction histories
can be transferred to the KG completion task, and improves its performance
significantly. As a further step, we plan to investigate other ways to model the
relationship between two representations of an item/subject in the two tasks,
e.g., using different dimensions for representing items.
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