
Env2Vec: Accelerating VNF Testing with Deep Learning
Guangyuan Piao

Nokia Bell Labs
Dublin, Ireland

guangyuan.piao@nokia-bell-labs.com

Patrick K. Nicholson
Nokia Bell Labs
Dublin, Ireland

pat.nicholson@nokia-bell-labs.com

Diego Lugones
Nokia Bell Labs
Dublin, Ireland

diego.lugones@nokia-bell-labs.com

Abstract
The adoption of fast-paced practices for developing virtual
network functions (VNFs) allows for continuous software de-
livery and creates a market advantage for network operators.
This adoption, however, is problematic for testing engineers
that need to assure, in shorter development cycles, certain
quality of highly-configurable product releases running on
heterogeneous clouds. Machine learning (ML) can acceler-
ate testing workflows by detecting performance issues in new
software builds. However, the overhead of maintaining several
models for all combinations of build types, network config-
urations, and other stack parameters, can quickly become
prohibitive and make the application of ML infeasible.

We propose Env2Vec, a deep learning architecture that
combines contextual features with historical resource usage,
and characterizes the various stack parameters that influence
the test execution within an embedding space, which allows
it to generalize model predictions to previously unseen en-
vironments. We integrate a single ML model in the testing
workflow to automatically debug errors and pinpoint perfor-
mance bottlenecks. Results obtained with real testing data
show an accuracy between 86.2%-100%, while reducing the
false alarm rate by 20.9%-38.1% when reporting performance
issues compared to state-of-the-art approaches.

ACM Reference Format:
Guangyuan Piao, Patrick K. Nicholson, and Diego Lugones. 2020.
Env2Vec: Accelerating VNF Testing with Deep Learning. In Pro-
ceedings of ACM Conference (Conference’17). ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Network operators are continuously adopting modern DevOps
practices for virtualizing network functions (e.g., firewalls
and load balancers) and accelerating software delivery and in-
tegration. These practices motivate short development cycles
for creating and deploying new product features and reducing
time-to-market. However, the change towards more aggres-
sive product life-cycles is creating significant challenges for
network engineers to test new software builds and assure
carrier-grade quality. Several tools are available for testing
automation, yet debugging software errors and discovering
performance bottlenecks still require human expertise and
manual interactions that limit the pace at which new features
can be deployed to production.

Machine learning (ML) has the potential to accelerate VNF
testing by automating the diagnosis of software defects and

anomalous builds. This is complementary to recent proposals
in the context of network operation [2, 19, 30, 43], where
ML is used to enforce high-level policies to keep the network
functioning in case of faults [9], or for recommending and
automating tasks based on a centralized view of data [24].

Testing engineers are interested in promptly discovering
whether new features in the current software build have re-
sulted in any major performance deviation from previous ones.
However, current practices require manual investigation of
relevant key performance indicators (KPIs). Given the increas-
ing complexity of cloud stacks, this is quickly becoming a
daunting task – even for specialized teams dedicated to collab-
orating with developers in moving new software functionality
into production environments, e.g., site reliability engineers
(SREs) [11, 16, 40]. As a result, there is an increasing interest
in applying ML techniques to characterize a large number of
metrics and other monitoring information at scale.

Recent research has proposed ML to model VNF resources
[21, 29, 44], such as CPU/Memory usage, or Disk I/O and
Network counters, during previous non-problematic builds
and used such models to detect defects or accomplish other
decision making tasks [30, 43]. Current ML-based solutions,
however, neglect the high-dimensional parameter space of
clouds. This is a critical limitation that can yield such solu-
tions ineffective upon changes in the hardware/software stack
that are not representative of the environment used for data
collection and model training. We argue, and demonstrate
experimentally, that this parameter space is a core challenge
in software testing as it necessitates the accurate characteri-
zation of VNF performance in many thousands of possible
running environments. Here, the term environment refers to
the choice among the dozens of deployments with diverse
software builds, middleware versions, enabled features or
configuration, hundreds of test cases from endurance to re-
gression, each running on a variety of testbeds composed of
heterogeneous virtualized hardware.

At a high level, our aim is to incorporate a deep learning
(DL) system in the testing workflow; however, we focus our
design around three aspects that are critical for its adoption in
practice. First, the system must be robust to environment vari-
ations across testbeds and test cases. Second, the ML models
must be simple to maintain, avoiding any added overhead and
complexity in the testing workflow. Third, the system must
be trustworthy to extrapolate predictions to previously unseen
environments and to minimize false alarms.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’17, July 2017, Washington, DC, USA Guangyuan Piao, Patrick K. Nicholson, and Diego Lugones

Table 1. Example of Environment Metadata (EM) organized according to their position in the hardware/software stack. The
metadata consists of strings with either a numeric or textual value associated, which are used to construct an embedding space.
The domain of values can vary significantly from tens in the lower layers of the stack (e.g., CPU clock 2.1 GHz to 4.0 GHz, 8 to
48 cores, etc.) to hundreds of possibilities at application layer (e.g., build type, configuration parameters, dependencies, etc.) or
test-case layers (user/traffic profiles, multivendor environments, devices, etc.) – refer to § 4.2.1 for more details.

Hardware Virtualization Operating System Application/VNF Test case

M
et

ad
at

a

CPU clock rate [GHz] Hypervisor (e.g., ESXi 6.5) Kernel (e.g., Linux 5.3.7) Build (e.g. stable, 1.0.1) Workload type (e.g. data)
Number of cores [#] Cluster size [#] ulimits [list] Runtime env. (e.g., JVM) Traffic model (e.g., self-similar)
RAM [GB] DPDK [on/off] FS/disk [ext4] Features enabled [list] Form Factor (e.g., surge)
Disk size [GB] SR-IOV [on/off] Swap size [GB] Service Chain [list] System Under Test (e.g., DB)
Hyper-Threading [on/off] CPU pinning [on/off] Page size [KB] Slicing [#] Test type (e.g., endurance)
Number of thread [#] vCPU [#] CPU gov. (e.g., ondemand) Elasticity [yes/no] Fault injection [list]
· · · · · · · · · · · · · · ·

In this paper, we introduce Env2Vec (short for “environ-
ment to vector”) a software testing system that abstracts out
environment details using embeddings; i.e., a fixed-length
vector of real numbers that encode the high-dimensionality of
cloud parameters leveraging environment metadata and large
amounts of historical data collected during software testing
activities. The idea is motivated by the recent success of em-
beddings in other domains such as natural language process-
ing (NLP) [31] where word embeddings capture some of the
semantics of the input (e.g., similar words are nearby in the
embedding space), and can be reused across machine learning
models for related tasks. In the context of VNF testing, we use
the environment embeddings to automatically club together
test executions with similar environment metadata, as well
as to mix-and-match embeddings of different environments
to detect performance problems when a test case is executed
in a previously unseen environment, for which there is no
historical data.
Env2Vec systematically models and predicts VNF perfor-

mance using three inputs: i) VNF KPIs and traffic metrics
from the live running test case; ii) historical resource usage
from previous software builds and iii) environment metadata
labels that describe the environment specific configuration; an
example of concrete, but non-exhaustive, labels can be found
in Table 1. The system discovers performance anomalies au-
tomatically by detecting KPIs in the new build that deviate
from the baseline model, and reports the time interval of such
deviation without further manual iterations.

The problem can be formalized as a contextual anomaly
detection [17, 20]. More precisely, the resource characteriza-
tion of VNFs is a time series prediction problem, in which the
goal is to predict the resource usage yp at a timestep p, given a
set of contextual features {ap1 , · · · ,a

p
f }, and a sliding window

of historical values of both y and a at previous timesteps. We
refer to the union of the resource time series and contextual
features as contextual time series. Each time series belongs to
a sequence of builds related to a specific testbed and test case
combination, that we refer to as a build chain. A build chain

may be used to test whether an updated VNF build could po-
tentially cause problems for a particular telecommunication
operator, by modelling the configuration and enabled features
in some part of their network (via the testbed) and the types
of traffic they receive (via the test case). From a workflow per-
spective, a tester may be responsible for some number of such
testbeds and test cases, and must assure that software updates
do not cause problems for their assigned setups. Thus, a build
chain is tied to a particular environment (the testbed and test
case), which is abstracted as a set of environment metadata
(EM) values. The testbed can be represented by labels in the
first four columns of Table 1, whereas the test case can be
abstracted using labels from the last column. For example,
the test case traffic model may be a typical daily load curve
for the system under test, whereas a workload type may be a
particular distribution of packet types and their lengths. For
a particular build chain, Env2Vec therefore has the task of
determining if the current time series indicate a performance
anomaly with respect to the previous builds in the chain.

To achieve operational simplicity, our system creates and
updates a single generic model that can be applied to VNF
testing without overhead and complexity added to the engi-
neers – contrary to creating models for each chain separately
as proposed in previous work. As mentioned above, this is
feasible by using environment embeddings to reduce the di-
mensionality of the environment variables.

In summary, our contributions are:

• Env2Vec, a ML-based VNF testing system that automates
the detection of defects in new software builds across het-
erogeneous clouds. The core of the system is a novel deep
learning architecture that combines gated recurrent units
(GRUs) [8] to model the behavior of the resources over
time, as well as a feedforward neural network (FNN) to
model the contextual features automatically, and lookup
tables with the environment embeddings to account for the
high-dimensional parameter space of cloud stacks.

• A comprehensive evaluation with i) public benchmark
datasets from three different types of VNFs, as well as, ii)
real software testing scenarios with multiple builds across

2



Env2Vec: Accelerating VNF Testing with Deep Learning Conference’17, July 2017, Washington, DC, USA

125 testbeds and test case combinations. Compared to other
ML approaches, Env2Vec performs 20.9% − 38.1% better
in correctly identifying issues.

• A technique to create environment embeddings to reveal
relationships in similar builds which tend to cluster together,
and concrete examples that show how embeddings learned
from historical data of other environments are used for
detecting issues in a new previously unseen environment –
this is not possible with previous proposals.
The rest of the paper is organized as follows. In § 2, we

motivate our work. § 3 provides details of Env2Vec and § 4
presents results. § 5 elaborates on related work, § 6 discusses
limitations, and we conclude in § 7. Finally, Appendix A and
Appendix B list formal definitions and abbreviations.

2 Motivation
Here we summarize the key limitations of current practices
that motivate our design choices for Env2Vec, more details
and a taxonomy of recent research is provided in Section 5.

Limited assurance. Current approaches are evaluated in terms
of model accuracy and only consider how well the model rep-
resents the VNF resource usage. However, there is no assess-
ment on how models improve the end-to-end testing workflow
in detecting anomalies and software defects. This is a signifi-
cant gap in the literature, since the real utility of performance
modeling is its applicability to automate downstream tasks
that can accelerate development cycles.

Neglected resource usage over time. Some techniques make
use of contextual features for performance prediction, but only
focus on the current state of the system usage and neglect
the resource consumption over the recent past. This leads to
inaccurate predictions as it does not properly characterize
the non-linear behavior of software and makes the model
inefficient to capture certain workload variations.

Tight coupling between model and environment. Typically,
one model is learned for each environment, meaning that
testing a VNF release across multiple testbeds and platforms
results in a wide variety of models that depend heavily on the
underlying testbed environment. Figure 1 (top) shows this is-
sue. In the heatmap, each column represents a different build
chain, and each row represents a contextual feature. For each
build chain we trained a linear regression model to illustrate
how the environment influences the learning process even
when the model input (contextual features) and output (KPIs,
CPU usage in this case) are fixed. That is, notice how the
associated weights (shades of blue) of each contextual feature
varies significantly for each build chain model. Moreover, the
accuracy of each model varies widely, as shown in Figure 1
(bottom). Hence, models can be ineffective when the combi-
nation of contextual features and environments is sparse as
there is insufficient training data available for some builds.

The virtualization or softwarization of network functions
allows developers to use standard testing practices in high-
availability, carrier-grade scenarios. Moreover, to expedite
testing and onboarding new features to VNFs, network opera-
tors are adopting modern DevOps practices similar to those
used by web-scale operators. However, there are operational
challenges associated to VNF development that differ from
generic software development. For example, the dependen-
cies on accelerators and other hardware features –in some
cases purpose-built– and the need for a separation between
control and data planes for optimizing resource performance.

The above provides evidence that the environment meta-
data is crucial in the modelling process. Our hypothesis is that
a single generic model improves the testing workflow over
individual models if such additional metadata is used as input.
This is possible if the metadata induces natural groupings over
the build chains to increase the training data available com-
pared to an individual model. Moreover, such a model would
still apply to new environments for which there is no previous
data, but that fall within these groupings. This is simply not
possible using individual build models. In the next sections,
we introduce our testing system and detail its components.

3 System Overview
Figure 2 shows the Env2Vec architecture and illustrates the
testing workflow. In the following text, each step corresponds
to a numbered arrow in the figure.

(1) Testbed data collection: The testing engineer schedules
a test case execution of a VNF and spawns virtual machines
(VM) for workload generation or trace replication. Both VNF
and workload configurations are possible using the service
API specific to the VNF under test, whereas the underlying
resource configuration (e.g., VM flavor, user-data, allocation,
etc.) is performed via the cloud API. Both APIs are, in turn,
used to monitor the workload metrics (WMs), the VNF per-
formance metrics (PMs), and the resource utilization (RU)
metrics. Environment metadata (EM) is also collected, as
shown previously in Table 1. The WM, PM, and RU metrics
are linked to EM and pulled into a real-time time-series data-
base (TSDB), in our case, Prometheus [35]. When a new test
case is executed, we modify a service discovery configuration
JSON file for Prometheus, appending the endpoint for the
metric collector along with a reference to the EM labels:
[..., {"targets": ["IP:PORT"],
"labels": {"env":"EM_record_id"}}]

(2) Model training: The model is updated daily using all
the new data generated where no performance problem was
flagged. Executions with true positive alarms are masked
out from the training data, along with any false negative
problems discovered independently by the testing engineers.
We note that this is a best effort approach, and obviously some
problems will be missed. Provided these are not sustained

3



Conference’17, July 2017, Washington, DC, USA Guangyuan Piao, Patrick K. Nicholson, and Diego Lugones
Co

nt
ex

tu
al

 F
ea

tu
re

s

Contextual Feature Importance Across Testbed and Testcase Build Chains

Build chains across Test beds/cases

10 2

101

Re
sid

ua
ls

10 8 6 4 2 0 2
log-normalized coefficient value

Figure 1. Top: A heatmap showing the weight, or importance, assigned to each contextual feature across a large number (125)
of build chains, i.e., different testbed and test case executions. In the y-axis, each rectangular cell represents a different input
metric, and in the x-axis each rectangular cell represents a different build chain. The color shade depicts the importance (i.e.,
symmetrically log-normalized coefficient) assigned to that metric and build chain for predicting CPU utilization based on a
linear regression model. White cells have zero weight, which means that either the metric was unavailable on that testbed, or that
it was not deemed important by the model. Bottom: for each column, we provide a boxplot capturing the absolute value of the
residuals for the each model. Box plots highlighted in red indicate the occurrence of some residuals above 10%. In other words,
the model prediction of the CPU was off by at least 10% on at least one sample of the test data, indicating poor performance.

http

Alarm DB 
PostgreSQL

Lookup tables

Concatenation 
Layer vs = [ vts , vfs ] C = [ ec1, ec2 ...,eck ]

Dense Layer ( vd )

FNN

c …1…ap
1 ap

map
2yp-n … yp-1yp-2

GRUs

Anomaly 
Detection

’
yp

’yp ? RU

Env2Vec (Prediction)

Testbed(s)

WM

Prometheus metric collector - VNF API   

PM RU

Cloud LayerHosts

VNFs VNFsTest
Workload

Environment
Metadata

Prometheus Time-series DB

Frontend

Testing 
Engineer

4

http pull
1

HTTP 
server

23

http

EM

Prometheus Client (python)

RUHISTORY CF EFRaise 
Alarm 

to DB?

Is 
model 
stale?

Keras/TensorFlow

httphttp

Prometheus Client, 
Metric Collector (Python)

cronjob

Keras/TensorFlow

Env2Vec (Training)

c2 ck

Figure 2. VNF testing workflow and system components
.

performance problems (e.g., covering a long duration and
many samples) and overall only represent an extremely small
fraction of the training data, we have found the model to still

be highly accurate. After training completion, the model is
available via HTTP.

(3) Prediction pipeline: Data of the running testbed is read
from the TSDB into the Env2Vec ML pipeline. The data
consists of the CFs and RU: recall that the union of WMs
and PMs are referred to as contextual features, CFs. The pre-
diction pipeline monitors the running VNF via Prometheus
over HTTP, and constructs a dataframe from this monitor-
ing data, appending the relevant EM. An example of such a
dataframe can be found in Table 2. The running model re-
ceives the dataframe and compares the inferred RU to the
observed value. If there is a significant deviation, then an
anomaly is flagged. As discussed later in Section 3.2, the
precise definition of what constitutes a significant deviation
is user-configurable, and tuned based on the goals of the user.

(4) Raising alarms: Upon detecting anomalies, Env2Vec
pushes an alarm into a PostgreSQL database [34]. This alarm
contains all the relevant information to allow a testing en-
gineer who triggered the test case execution to pinpoint on
which testbed the issue occurred, and during which time in-
terval. Such alarms can also trigger automated actions, such
as early termination of the test case execution.

(5) Updating the model: The Env2Vec prediction pipeline,
fetches the latest model (essentially a weight matrix), before
beginning execution, from the training pipeline HTTP server.

High-level overview of ML model The deep learning pipeline
is implemented with Keras [23] and TensorFlow [41] (see

4



Env2Vec: Accelerating VNF Testing with Deep Learning Conference’17, July 2017, Washington, DC, USA

Table 2. Dataframe example created from the TSDB. In the
performance metrics (PMs) rows, success ratios indicate ra-
tios of delivered-to-sent packets across various network inter-
faces, and response codes are counters tallying the number
of egress server error response codes. For example, a 503
response code indicates a service is unavailable.

Dataframe Features Data Type

C
Fs

W
M

s

Client UE <int>
Burst period <float>
Demand (Mbps) <float>
· · · · · ·

PM
s

Success_Ratio<mod_id> <float>
Response_CodeERR:50X <int>
Packet_cnt<mod_id> <int>
· · · · · ·

E
M

Build Version <char>
System Under Test <char>
Test Case <char>
· · · · · ·

R
U

H
is

t cput−1,t−2, ...,t−k <list>
memt−1,t−2, ...,t−k <list>
· · · · · ·

R
U

cpuusaдe <float>
netTX<I FID> <int>
· · · · · ·

Figure 2). This pipeline has the dual function of i) training a
resource utilization model to infer VNF resource usage (y ′

p )
with respect to a set of contextual features and environment
information; as well as ii) execute the model in real time to
detect deviations between the inferred value and the actual
observed resource utilization of the VNF (i.e., contextual
anomaly detection: y ′

p ? RU). In the next section we provide
a detailed description of the deep learning architecture.

3.1 Env2Vec – Main Components
In this section, we describe each component of Env2Vec.
To simplify the discussion, in the rest of the paper we use a
tuple of four representative EM labels such as testbed, SUT,
test case and build information to represent an environment,
e.g., < TestbedID , SUTMod ,TestcaseID ,Buildvers > where
TestbedID refers to a testbed with a specified EM configura-
tion (as in Table 1), SUTMod refers to the system under test
or software module, TestcaseID indicates the test case which
includes information such as workloads, duration, etc. Finally,
Buildvers denotes a combination of build type and version.

FNNs for capturing contextual features. Feedforward neu-
ral networks can model complex relations between CFs and
RU over time, as shown by [29, 30], and reduce manual effort
required for feature engineering: i.e., manual preprocessing
to create new features by combining and transforming the
CFs. FNNs learn a numeric weight matrix that captures im-
portant relations between the CFs that impact RU, and the

result of multiplying this weight matrix with the input CFs
(and applying an activation function) is a numeric vector Vfs
(see Figure 2) that should reflect these relations.

GRUs for incorporating resource history. To improve the
model predictions, we incorporate a window of n recent mea-
surements of resource usage {yp−n, · · · ,yp−1}. As such data
is sequential, we use GRUs [8] which are a type of Recur-
rent Neural Network (RNN), successfully adopted in other
domains such as recommender systems [46] and time-series
forecasting [6]. The input to the GRUs is a sequence of his-
torical resource utilization values (RUhistory in Figure 2),
and the output is a vector Vts that summarizes the expected
impact of the observed historical RU.

Embeddings for environments. There are two possible ex-
tremes when training characterization models. One is that
we assume build chains are completely different from each
other, and we train a separate model for each, as in pre-
vious research. The other extreme is to treat all environ-
ments exactly the same and use all data from those envi-
ronments to train a single characterization model. As one
might expect, this assumption yields very inefficient mod-
els, if not useless, because of the high-dimensional space
of environments, as we can notice from Figure 1 in Sec-
tion 1. However, some environments will be similar to each
other, especially those with certain overlap of EM labels, e.g.,
< Testbed15, SUTDB,TestcaseReдr ession,Builds10 > and <
Testbed15, SUTDB,TestcaseEndurance ,Builds11 >. Intuitively,
combining the data of similar environments can improve the
modelling process in two aspects: 1) it provides models robust
to environment changes, and 2) it improves the accuracy with
more data from similar environments.

We provide an optimal solution between those two ex-
tremes using embeddings of the environment, which are nu-
merical vectors that reduce the dimensional space and fa-
cilitate the detection of similarities between environments
when implemented with lookup tables. For each environmen-
tal feature, there is a lookup table associated where each row
corresponds to an embedding with respect to the feature value
(e.g., Testbed143). The input of lookup tables are the envi-
ronment feature values {c1, · · · , ck}, and the output are their
embeddings {ec1, · · · , eck} as shown in Figure 2. Similar to
handling unknown words in NLP, the lookup table also con-
tains an additional unknown vector/embedding to deal with
an unknown environment that has not appeared in the training
data before.

The embeddings (values in each vector) are initialized
before the training process with a dimension of 10. Af-
terwards, the embeddings are learned during the training
process by minimizing the Mean Squared Error (MSE =
1
N
∑N

i=1(yi − y ′
i )
2) loss function. In Section 4, we show how

similar environments cluster together in the embedding space,
and how these can be reused across testing tasks.

5



Conference’17, July 2017, Washington, DC, USA Guangyuan Piao, Patrick K. Nicholson, and Diego Lugones

3.2 Putting All Together
We have described the different deep learning components of
our approach and their output vectors with model coefficients
learned automatically for dedicated types of input information.
These vectors are:

• vfs for contextual features,
• vts for previous resource utilization values, and
• a set of embeddings {ec1, · · · , eck} for environmental

features.
Next, we explain how to combine these vectors to infer VNF
resource usage and detect anomalies at testing time.

Concatenation and dense layers. In this layer, the output
from GRU and FNN layers are concatenated into a single
vector vs = [vts, vfs]. In addition, the embeddings with re-
spect to different environments are concatenated into a single
environment embedding C in this layer.

C = [ec1, ec2, · · · , eck] (1)

Furthermore, vs is fed into a FNN in a dense layer to output
vd, which has the same dimensionality of the concatenated
environment embedding C. This is a requirement as vd will
eventually be multiplied by C, and it also enables discovery
of further relations between vts and vfs.

Resource usage prediction. Env2Vec uses the dense fea-
ture representation vd and the environment embeddings C to
infer the resource utilization y ′

p at timestep p, as follows:

y ′
p =

∑
vd ⊙ C (2)

As can be seen in Equation 2, we use the sum of the
element-wise (Hadamard) product. This is inspired by previ-
ous work in recommender systems [46] where the element-
wise product has proven effective to capture the preference
score of an item with respect to a user [27, 36]. However,
there are other choices for modeling the dense feature repre-
sentation vd and the environment embedding C. For example,
the prediction can be done with an additional matrix R, i.e.,
y ′
p = vd · R · C; or, it can be done by using additional neural

network layers with the concatenated vector of vd and C as
an input. Both approaches require more parameters to learn
but yield similar results.

Anomaly detection. The VNF resource model is used along
with a common statistical approach [20] to automate anomaly
detection. First, we construct a Gaussian distribution mod-
elling the prediction error of normal (i.e., non-problematic)
builds using the time series associated with previous builds
in a particular build chain. This distribution has mean µerror
and standard deviation σerror . Then, for the time series asso-
ciated with the next build in the chain, we flag an anomaly
at a given timestep when the prediction (y ′

p , eq. 2), provided
by the model, deviates from the mean of the error distribu-
tion beyond a threshold γ × σerror . Here, γ is a positive real
number that defines the normal area in the error distribution,

and allows controlling the tradeoff between the precision and
recall for detecting anomalies. A higher value of γ indicates
a stricter criteria, which will result in a higher precision but
lower recall. In other words, an error at a certain timestep
which is larger than µerror + 2 × σerror will be treated as an
anomaly when γ = 2. γ can be set and adjusted by testing
engineers empirically based on the testing data, and the sub-
jective precision-recall tradeoff for detecting certain faults.
Finally, we remark that this approach assumes that the predic-
tion errors will follow a Gaussian distribution, and while this
may be adequate in many cases, it is not necessarily always
true. Thus, a more rigorous modelling of the prediction error
for a particular VNF may be required in such cases.

4 Env2Vec Evaluation
We divide our evaluation methodology in three parts. In Sec-
tion 4.1, we conduct a baseline comparison with state of the
art approaches using open data from the networking commu-
nity. The idea is to show the effectiveness of our proposal
in modeling VNF performance in terms of model accuracy
and simplicity. Then, in Section 4.2, we bring this model to
the testing workflow and demonstrate its use to automate the
anomaly detection in new software versions or system up-
grades. In this case, we use proprietary testing data obtained
from hundreds of different environments with diverse test
cases related to telecom software running on VNFs. Last, we
show, in Section 4.3, the performance of Env2Vec in discov-
ering anomalies in previously unseen environments – without
model retraining – by leveraging environment embeddings.

4.1 VNF Modelling using Benchmark Datasets
The goal here is to demonstrate (1) the comparative per-
formance of the single model learned by Env2Vec when
compared to multiple models learned for each environment
running different VNFs in the benchmark datasets, and (2)
whether using environment embeddings for training improves
the characterization performance.

4.1.1 Data Description
The KDN initiative [26] publishes a set of benchmark datasets
to facilitate the comparison and evaluation of machine learn-
ing approaches for modelling the resource usage yp of several
VNFs provided a set of contextual features. The data has
been widely used in previous studies [21, 29, 30] to evalu-
ate and compare different ML-based networking solutions.
The datasets contain the CPU utilization of three different
VNFs operating with real traffic: 1) intrusion detection with
Snort [38] configured with the default configuration [29]1;

1We note that the performance of Snort is highly affected by its numerous
configuration and ruleset specifications, and thus some important subset of
the configuration options and rules, as identified by a domain expert, could be
incorporated as environment metadata labels. However, we did not explore
this direction in the present work as the Snort dataset only had the default
configuration.

6



Env2Vec: Accelerating VNF Testing with Deep Learning Conference’17, July 2017, Washington, DC, USA

Table 3. KDN datasets split.

# of examples Snort Switch Firewall
Total 1,359 1,191 755
Training 900 900 555
Validation 259 141 100
Test 200 150 100

2) an SDN-enabled firewall, and; 3) an SDN-enabled switch.
These VNFs were deployed in VMs (Ubuntu 14.04.1) running
on VMware ESXi v5.5. The traffic is a replica obtained from
a deep packet inspection (DPI) infrastructure and injected
via tcpreplay. This traffic is represented by 86 features, in 20
second batches, which include data such as the number of
packets, the number of different IPs/ports, and the number of
5-tuple flows. More details of the datasets can be found in the
relevant related work [4, 26, 29, 30].

Our experiments follow the standard split of data into train-
ing, validation, and test sets. The training set is used for
learning the coefficients at each layer of the proposed model,
and for training the methods we compare to, which we will
discuss later in this section. The validation set is used for tun-
ing hyper-parameters in all methods, and for applying early
stopping and optimizing training times. The test set is used for
comparison purposes. Table 3 details the number of samples
for training, validation, and testing for each VNF dataset.

4.1.2 Evaluation Metrics
We use Mean Absolute Error (MAE = 1

N
∑N

i=1 |yi − y ′
i |) and

Mean Squared Error (MSE), defined in Section 3.1, as target
evaluation metrics for comparing the prediction performance
achieved by different methods. N denotes the size of each test
set, while yi is the actual monitored resource utilization and
y ′
i is the value predicted by the machine learning model. A

higher value of MAE or MSE indicates a lower accuracy. We
compare all methods based on their performance on the test
sets. Neural networks can find different local optimum, which
results in different MAEs and MSEs for each run. Hence,
we run up to 10 times the neural network models, e.g., FNN,
RFNN, and Env2Vec, for consistency and report the average
of these 10 runs when comparing to other methods. Finally,
we use the paired t-test with a significance of 0.05 to draw
meaningful conclusions when comparing means.

4.1.3 Methods to Compare
We compare Env2Vec to several state-of-the-art ML tech-
niques and baseline approaches. These are:
Ridge: This is a baseline method that exploits the traffic

features with a Ridge regression model, implemented with
scikit-learn [37]. We search the parameter space of the regular-
ization hyper-parameter α from {0.001, 0.1, · · · , 1000} using
the validation set of each VNF dataset.

Ridgets: This approach exploits both the set of traffic
features at timestep p and the resource utilization value of n
previous timesteps, and uses Ridge regression for predicting
the current resource utilization. Therefore, the set of features
used in Ridge(ts) are the same than for Env2Vec but the
complexity is different. Our intention with this comparison is
to examine whether a complex model performs better than a
linear model with the same set of features.
RFReg: This is a non-linear method that exploits the

traffic features with a Random Forest Regressor, imple-
mented with scikit-learn [37]. RFReg is an ensemble method
which consists of a set of estimators (decision trees) for
regression. We search the parameter space of the two
important hyper-parameters max_depth: {3, 4, · · · , 10} and
n_estimators (number of estimators): {10, 50, 100, 1000}.
SVR [21]: This approach uses support regression vec-

tors as a prediction model, it is also implemented with
scikit-learn. Here, the hyper-parameters to tune are: 1)
regularization α : {0.001, · · · , 1000}; 2) kernel function:
{linear,poly,rbf}, which refers to a method of using
linear models to solve a non-linear problem by transforming
input data; 3) a margin of tolerance ϵ : {0.1, 0.2, · · · , 1} which
sets a maximum allowed error margin.
FNN [29, 30]: This approach uses a feedforward neural

network using one hidden layer with a set of traffic feature
values as input. We use Keras [23] to implement this predic-
tion model, and tuned two hyper-parameters; one is the num-
ber of neurons in the hidden layer, which is drawn from the
following set of powers-of-two {32, 64, 128, 256, 512, 1024},
and the other is the dropout rate which is drawn from 0 to 0.9
in steps of 0.1. The number of neurons is set to 1,024 for all
the three datasets, which provides the best performance on
their corresponding validation sets. Dropout rates are set to
0.0, 0.6, and 0.1 for the Snort, Firewall and Switch datasets,
respectively.
RFNN: This is a variant of Env2Vec using recurrent neu-

ral networks (GRUs) and FNNs but without using the em-
beddings of environments, and trained for each environment
separately, e.g., we create three RFNN models for the KDN
datasets. Here, we reuse the best performing hyper-parameters
of the FNN method. In addition, we tune the number of previ-
ous timesteps n to achieve the best performance. To this end,
we draw n from 1 to 9 in steps of 1. The best performance on
the validation set is achieved with n = 1 for Snort and SDN-
switch and n = 2 for the Firewall data. We used TensorFlow
[41] and Keras to implement RFNN.
RFNNall: is a variant of Env2Vec without using the em-

beddings of environments, as above, but training a single
model with all data from all environments. This allows to un-
derstand whether including environment embeddings actually
improve performance. The prediction of RFNNall is made by
the dense layer (Vd) with regression.
Env2Vec: Contrary to other methods, which result in m

models, where m is the number of environments, Env2Vec
7



Conference’17, July 2017, Washington, DC, USA Guangyuan Piao, Patrick K. Nicholson, and Diego Lugones

Table 4. MSE and MAE results on the three different VNF datasets using different prediction approaches with the best-performing
scores in bold. The mean and standard deviation of CPU utilization in each dataset are 196 ± 23 (Snort), 384 ± 46 (Firewall), and
448 ± 46 (Switch), respectively. [Shortened]

Snort Firewall Switch
MAE MSE MAE MSE MAE MSE

Ridge 5.72 49.83 13.68 661.37 11.34 211.60
Ridgets 5.35 44.52 12.03 339.21 10.74 184.14
RFReg 5.38 55.20 12.32 315.80 15.41 493.64
SVR 5.88 63.87 11.63 761.97 11.69 241.61
FNN 5.29 ± 0.08 45.18 ± 1.78 11.47 ± 0.20 398.20 ± 19.33 12.54 ± 0.08 333.45 ± 9.77
RFNN 4.81 ± 0.11 38.51 ± 3.32 10.47 ± 0.35 387.48 ± 34.78 11.15 ± 0.20 272.59 ± 8.06
RFNNall 5.52 ± 0.24 57.78 ± 5.20 10.98 ± 0.51 415.89 ± 73.45 12.03 ± 0.34 312.72 ± 13.81
Env2Vec 4.61 ± 0.12 36.08 ± 1.68 10.33 ± 0.49 288.85 ± 46.62 10.90 ± 0.19 267.80 ± 18.38

uses a single generic model to capture all environments. For
the KDN benchmarks, m = 3 for different VNFs. However,
for testing VNFs in production, the number is significantly
higher (e.g.,m = 125 for the data shown in Figure 1).

4.1.4 Results
Table 4 shows the MAE and MSE results of CPU usage
prediction using aforementioned methods on each test set
with respect to the three VNFs.

Single model vs. Multiple models. First, we discuss whether
training a single model using Env2Vec outperforms training
separate models for each dataset. On the Snort dataset, we ob-
serve that Env2Vec outperforms other baseline methods sig-
nificantly followed by RFNN, FNN and Ridgets. Ridgets,
which incorporates n previous timesteps to the Ridge regres-
sion model also improves the prediction performance sig-
nificantly in terms of both MAE and MSE. Different from
the results in [21], SVR does not perform well on Snort or
the other datasets. This might be because the evaluation met-
ric used in [21] is different from MAE and MSE, and does
not reflect the prediction performance as well. Similar to the
results on the Snort dataset, Env2Vec provides the best per-
formance in terms of MAE and MSE on the Firewall dataset
followed by RFNN. On the Switch dataset, we observe dif-
ferent performance trends than in other datasets. The best
performing method is Ridgets, which is a linear model with
n previous CPU utilization values and the set of features at
the current timestep. Consistent with the results on Snort and
Firewall datasets, Ridgets outperforms Ridge significantly.
Overall, our proposed approach provides a competitive char-
acterization performance compared to all techniques across
all datasets despite using a single characterization model.

Importance of environment embeddings. Secondly, we dis-
cuss the impact of using environment embeddings by com-
paring the performance achieved by Env2Vec and RFNNall.
As we can see from the table, the MAE and MSE results for
RFNNall, which does not use embeddings, are worse than us-
ing Env2Vec across all VNF datasets. Without embeddings,

RFNNall essentially treats all data, from the three different
VNFs, identically for training the characterization model,
which leads to a poorer performance due to the differences
across VNF datasets. This is another extreme compared to
methods such as RFNN which assumes each VNF dataset has
no relationship or similarity and should be trained separately.
The improvement of Env2Vec over RFNNall demonstrates
that capturing the similarities between environments with
embeddings is crucial for training a single characterization
model with all data from those environments.

The implications of these results are twofold: (1) Despite
training and using a single model, Env2Vec can achieve
either the best or competitive performance in predicting re-
source usage of different VNFs when compared to training
models for each VNF separately. The results are promising
since in reality there is a large number of VNFs to model,
so maintaining a model per VNF/environment combination
can be a daunting task; (2) Incorporating environment em-
beddings, is critical to generalize the model when combining
training data from multiple environments.

4.2 Env2Vec in the Software Testing Workflow
We now incorporate Env2Vec in the testing workflow end-
to-end to detect performance defects in software builds across
hundreds of different environments. This approach can be
used for detecting performance problems across many types
of resources such as CPU, memory and disk, or other VNF
specific KPIs such as response time, network jitter, etc. Here,
we characterize VNF usage of specialized network cards with
interest of detecting abnormal CPU usage of the network card
for different test executions of upgraded builds.

4.2.1 Carrier-grade VNF Testing
We use data of a virtualized telecom software product, which
incorporates several test scenarios for different software up-
grades. The testing activities include over 600 environments.
The dataset contains 125 build chains for multiple combina-
tions of testbed, build type, SUT, and test case, and consists
of about 400,000 timesteps/data points measured at 15 minute

8



Env2Vec: Accelerating VNF Testing with Deep Learning Conference’17, July 2017, Washington, DC, USA

# of Models MAE MSE
Ridgets 125 2.43 30.11
Env2Vec 1 2.38 22.92

0 20 40 60 80 100 120
Build chains across test beds/cases

10

0

10

M
AE

 im
pr

ov
em

en
t

Improvement of the CPU characterization using Env2Vec compared to Ridgets

(a) Env2Vec vs. Ridgets

# of Models MAE MSE
Ridgets 125 2.43 30.11
RFNNall 1 2.48 24.74

0 20 40 60 80 100 120
Build chains across test beds/cases

10

0

10

M
AE

 im
pr

ov
em

en
t

Comparison of the CPU characterization using RFNNall compared to Ridgets

(b) RFNNall vs. Ridgets

Figure 3. (a) The improvement of CPU characterization in terms of MAE for the set of build chains in Figure 1 using Env2Vec
compared to using Ridgets. Despite using a single model, Env2Vec provides competitive characterization performance and
better MAE and MSE results as shown in the table at the bottom left of the current figure. (b) The comparison of using a variant
of Env2Vec without using environment embeddings (RFNNall) and using Ridgets. The results indicate the importance of
using environment embeddings in order to achieve the best characterization performance with a single model.

intervals. In particular, there are nearly one hundred testbeds,
several types of SUT, and hundreds of test cases and builds.
The number of test executions continuously increases with
number of testbeds, test cases, and new builds. Each time se-
ries describes a set of contextual features and the CPU usage
of the network function during a certain testing period for
each new build. The contextual features are workload and
performance metrics defined and collected by testing engi-
neers including standard event counter data associated with
different network elements and functions. For the purposes of
training and testing our ML models, we treat the time series
associated with the current (or most recent) build in each
build chain as the test case, and those associated with the
previous builds as the training/cross-validation data. As one
might expect, manual investigation of the results for all test
cases of each new build is not scalable, and requires deep do-
main knowledge. Also, training one model for the set of time
series of each environment separately can result in hundreds
of models to be retrained and maintained.

Next, we first show the CPU characterization results given
a set of traffic features in order to investigate whether the
results are similar to those for the KDN datasets. Second,
we use the characterization model for contextual anomaly

detection in Section 4.2.2, where the goal is to detect whether
a build upgrade has caused some issue during the test.

Env2Vec – Model Accuracy. In this case, we evaluate over
the same set of build chains from which we obtained Figure
1 (in Section 1). Figure 3a shows the improvement of using
Env2Vec for the entire set of chains compared to using sep-
arated Ridgets on each build chain. Notice, again, that the
single Env2Vec VNF model provides competitive accuracy
compared to 125 different models for each environment. The
table in the bottom left of Figure 3a shows the detailed results
of the average of MAE and MSE values across all 125 build
chains. We also observe that without embeddings, RFNNall
performs worse than Env2Vec in terms of both MAE and
MSE and also has higher MAE compared to Ridgets in
Figure 3b. This confirms our hypothesis that embeddings
are necessary for training a single generic model with all
environment data. These results are consistent with the ones
obtained in Section 4.1. The highest MAE improvements of
using Env2Vec and RFNNall are obtained due to the limit
of Ridgets as a linear model. This is consistent with the
findings in Mestres et al. [29, 30] which show that neural
networks are needed to model complex resource usage.

We generalize the results above in Figure 4, which shows
the MAE cumulative distribution function (CDF) across the

9



Conference’17, July 2017, Washington, DC, USA Guangyuan Piao, Patrick K. Nicholson, and Diego Lugones

10 1 100 101

log10(MAE)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pe
rc

en
t

CDF of MAE results of the 125 build chains
Env2Vec
Ridge
Ridgets
RFNNall
FNN
RFNN

Figure 4. Generalized results. MAE CDF over all 125 build
chains and all methods. Logarithmic scale is used to clearly
show MAE differences between approaches.

125 build chains for all techniques under evaluation. Noting
the log-scale on the x-axis, we make the following observa-
tions: 1) Env2Vec has slightly worse MAE scores than other
methods when the MAE for the test case is small (e.g., the
MAE of the CPU prediction is ≤ 1%), however; 2) Env2Vec
has significantly better MAE scores than other methods when
the MAE scores are high (e.g., > 5%). For the most diffi-
cult 10% of the cases, that have the highest MAE scores,
Env2Vec has the best performance over all methods. This
indicates that Env2Vec is not overfitting to small CPU fluc-
tuations, and is also more robust in difficult cases.

4.2.2 Automating Anomaly Detection in New Builds
Here, we compare Env2Vec to a state-of-the-art anomaly
detection approach: HTM-AD [1], to evaluate the benefits of
the VNF characterization model end to end. The objective is
to automate the detection of CPU performance problems. We
also include Ridge, Ridgets in the comparison.
HTM-AD is an unsupervised anomaly detection method

that does not consider any contextual features. Rather, it only
uses the target resource consumption (in this case CPU) as
input to determine whether an anomaly has occurred. Our
proposed approach, as well as the other methods discussed in
Section 4.1.3, use additional time series metrics as contextual
features. Hence, we include HTM-AD to quantify the benefits
of incorporating contextual features for detecting performance
problems, compared to a naïve approach that only considers
a single time series.

When automating anomaly detection, it is critical to avoid
raising many false alarms that would incur testing engineers
unproductive efforts and likely cause them to abandon the
system. To this end, we further filter predicted anomalies to
only include those where the difference, in CPU utilization,

between the predicted and observed values not only exceeds
γ standard deviations, but also has absolute value exceeding
5%. This additional filtering is a common practice to reduce
false alarms in the literature [7].

Evaluation metrics. Manually checking each timestep for
anomalies across all testbeds and build types is infeasible. In-
stead, we requested testing engineers provide labels only for
the set of alarms flagged by at least one of the different imple-
mented approaches. To measure quality of the alarms flagging
performance problems, we use true and false alarm rate for
evaluation: AT =

Ntp
Ntp+Nf p

and AF = 1 − AT , respectively.
Ntp and Nf p denote the counts of the true positive and false
positive alarms, respectively. So, an ideal detector should flag
performance problems with AT = 100 and AF = 0.

Detected performance problems. Table 5 shows the results
of performance problem detection for all new build tests on
a certain date across 11 different test executions. During the
test executions, a variety of different problematic inputs and
scenarios (e.g., increased latency on certain interfaces) are
simulated in the network, often overlapping in time and affect-
ing different components of the system under test. Crucially,
the vast majority of these simulated problems do not lead to
any noticeable impact on the collected metrics. As discussed,
we pooled all alarms raised by the union of all approaches,
and among these alarms, 35 were confirmed to be true pos-
itive cases, where a significant impact on the metrics was
observed. Due to the data collection process, we do not have
a measure of the false negative cases (i.e., an alarm should
have been raised but was not).
HTM-AD provides anomaly scores ranging from 0 to 1, and

we only considered when the anomaly score is equal to 1 to
generate alarms. Despite using the highest anomaly score to
detect performance problems, HTM-AD provides poor results
compared to other approaches that leverage contextual fea-
tures, which shows the importance of considering contextual
features account for in this context.

Table 5 shows the results when using different values of
γ which can be empirically set by testing engineers. The
accuracy (AT ) increases with higher values of γ while the
number of detected problems decreases. Testing engineers
can set γ based on their priorities. For example, if the priority
is detecting more performance problems automatically with
reasonable accuracy, Env2Vec with γ = 1 can detect the
highest number of problems (25) with AT of 0.862. When
the priority is raising highly accurate alarms and no false
positives, Env2Vec also provides the best performance with
more alarms (18) and AT of 1.0 when γ = 2. Results indi-
cate that Env2Vec outperforms other VNF models trained
separately on each environment for different γ ′s.

10



Env2Vec: Accelerating VNF Testing with Deep Learning Conference’17, July 2017, Washington, DC, USA

Table 5. Performance problem detected for different γ values.
In total, there were actually 35 performance problems based
on the feedback from testing engineers.

# of
alarms

correct
alarms AT AF Note

HTM-AD 42 16 0.381 0.619
Ridge 32 20 0.625 0.375

γ = 1Ridge(ts) 26 17 0.653 0.347
RFNNall 18 16 0.889 0.111
Env2Vec 29 25 0.862 0.138
Ridge 25 16 0.64 0.36

γ = 2Ridge(ts) 24 16 0.667 0.333
RFNNall 15 14 0.933 0.067
Env2Vec 18 18 1.0 0.0
Ridge 20 11 0.55 0.45

γ = 3Ridge(ts) 21 13 0.619 0.381
RFNNall 8 8 1.0 0.0
Env2Vec 13 13 1.0 0.0

4.3 Testing Unseen Environments, Embeddings Reused
Previously proposed approaches train one model for each
environment, which requires the samples from each en-
vironment to be available prior to training. These ap-
proaches cannot be used for testing in unseen environments
as data must be collected a-priori for training. Here, if
there is a new previously unseen environment, e.g., e =<
Testbed13, SUTF , TestcaseEndurance , BuildS01 >, several
tests need to be run to gather enough data for training a model.
This happens despite that there can be a lot of unexplored
data of some similar environments in the historical data,
such as e =< Testbed13, SUTF , TestcaseLoad , BuildS03 >
and e =< Testbed08, SUTA, TestcaseEndurance , BuildS01 >.

In contrast, Env2Vec can learn the embeddings of envi-
ronments, given the time series data in a similar environment,
or a portion of it. These embeddings can be reused for con-
structing the environment embeddings of a new unseen envi-
ronment as illustrated in Figure 5. The idea of reusing learned
environment embeddings is motivated by its use in natural
language processing where the main purposes of learning
word embeddings is to discover semantics or relationships,
and then use them to infer meaning, especially when there is
not enough data for supervised learning.

Next, we discuss how embeddings learned with Env2Vec
have semantic meanings or relationships, and show how to
reuse them for modelling RU in unseen environments by
combining EM subsets.

Learned environment embeddings. Figure 6 shows the con-
catenated embeddings of environments for each test execution
in the telecom dataset, where the dimensionality has been
reduced to 2-dimensional space using principal component
analysis [22] for simplifying visualization. These environ-
ment embeddings are clustered based on their similarities.

Figure 5. Example of reusing environment embeddings from
historical data to construct environment embedding for a new
unseen environment. This allows Env2Vec to be applicable
for detecting VNF performance anomaly without delay, while
other approaches still need to collect new training data.

Figure 6. Embeddings of environments concatenated for each
test case, visualized in a 2-dimensional space. Different colors
in the figure denote different types of builds (e.g., build type
D (debug), T (test), S (stable) etc.), and we can notice that
environment embeddings associated to similar build types
(e.g., BuildD01, BuildD02, · · · ) are close to each other.

We notice that each cluster with different colors in the figure
denotes different build types (e.g., S, B, D, etc.). That is, envi-
ronment embeddings belong to the same build type are close
to each other in their embedding space. In each cluster, more
overlap of the environments with respect to the testbeds, SUT,
and test cases, indicates a higher degree of similarity. More
spread out clusters, such as the grey one, indicate environ-
ments running the same build type but have some differences
with respect to their testbeds, SUT, or test cases. This shows
that the embeddings learned by Env2Vec capture the simi-
larities between environments, and therefore, it is reasonable
to construct the embeddings for a new unseen environment
when there is a lack of data for such environment.

Performance problem detection. To evaluate performance
problem detection in unseen environments, we reuse the 11

11



Conference’17, July 2017, Washington, DC, USA Guangyuan Piao, Patrick K. Nicholson, and Diego Lugones

test executions from the telecom testing datasets discussed
in Section 4.2.2 but blind out their available history of time
series data to treat those as unseen environments. We use the
rest of the data which does not contain any historical time
series associated with each target test execution for training
Env2Vec, and use it for detecting performance problems. As
there is no previous prediction error distribution associated
to a test execution in an unseen environment, we apply the
user-defined γ to the prediction error distribution computed
for all timesteps in the test execution. To justify the need for
a model that can adapt to a new environment, note that there
are around 800 timesteps for those 11 test executions, which
require a significantly time-consuming manual investigation.

Table 6 shows the results of performance problem detection
for the unseen environments and varying γ values. Character-
ization models such as Ridge and Ridgets are not applica-
ble (N/A) here since there is no historical data associated to
each unseen environment for training. HTM-AD does not per-
form well since it does not take those contextual features into
account and only uses the resource-usage time series for de-
tecting anomalies. Overall, Env2Vec outperforms RFNNall
with different values of γ . For example, Env2Vec raised
12 correct alarms out of 19 raised alarms with AT = 0.632
while RFNNall also raised 12 correct alarms out of 26 alarms
AT = 0.462. The improvement compared to using RFNNall
again shows the importance of leveraging environment em-
beddings in the context of detecting performance problems.
These results show that Env2Vec can detect performance
problems in unseen test executions, which is useful during
the period of gathering enough data and constructing pre-
diction error distributions while other alternative approaches
do not perform well. Despite a good precision of detected
alarms (e.g., with γ = 3), the number of detected performance
problems is smaller than the case with historical data in Sec-
tion 4.2.2. This problem is resolved by retraining Env2Vec
incrementally with the new data from the environment.

5 Related Work
In Jmila et al. [21], SVR was proposed for RU prediction
for the same KDN benchmark datasets used in this paper.
Other work on the same benchmark datasets suggest using
FNNs, but without revealing a comparative performance with
different models [29, 30]. Importantly, these approaches do
not incorporate historic resource usage and embeddings that
can reduce the high-dimensionality of environments for the
multiple possible testing use cases.

In the context of datacenters [10, 45] propose supervised
models for detecting system compliance with target service
level objective. Similarly, Mercury [28] can detect perfor-
mance issues caused by software upgrades after they are
deployed in operation. A signature-based approach has been
proposed [7] for detecting different types of previously-seen
performance anomalies of servers. In contrast, our system can

Table 6. Results of performance problem detection for un-
seen environments based on different numbers of standard
deviation (γ ) for detecting anomalies. Ridge and Ridgets
are not applicable (N/A) due to the lack of data in unseen
environments.

# of
alarms

correct
alarms AT AF Note

HTM-AD 42 16 0.381 0.619
Ridge N/A N/A N/A N/A
Ridge(ts) N/A N/A N/A N/A
RFNNall 99 18 0.182 0.818

γ = 1
Env2Vec 35 14 0.4 0.6
RFNNall 26 12 0.462 0.538

γ = 2
Env2Vec 19 12 0.632 0.368
RFNNall 13 8 0.615 0.385

γ = 3
Env2Vec 9 7 0.778 0.222

detect contextual anomalies of upgrades in the testing phase,
i.e., before deployment, and thereby it uses a non-continuous
set of time series for each test execution with different builds
to achieve a more representative model. Another difference
is that our learning approach is unsupervised in terms of the
anomalies in the dataset, while previous work [10, 13] treat
the problem as a supervised learning with SLA (Service Level
Agreement) compliance labels. Having an unsupervised ap-
proach is important because anomalies in build upgrades are
difficult or at least time-consuming to label. Env2Vec also
complements approaches that detect functional anomalies
through static analysis [12, 33], yet our focus is on detecting
performance anomalies without access to the actual code.

Finally, we consider representation learning [5] techniques
that leverage embeddings and have been recently studied in
the context of networking. For example, Net2Vec [14, 15]
aims to learn the embeddings of network traffic to enable
user profiling and personalization. Similarly, COBANETS [47]
applied embeddings to video traffic features to improve traffic
performance and quality of experience, QoE. We consider
these approaches complementary to Env2Vec.

6 Discussion
In this section, we discuss current limitations requiring further
research, and elaborate on our plans to address them in the
near future.

First, training a single model using all the data from all
environments requires more training time versus training a
separate model (such as Ridge) for each environment. For
example, Ridge and Ridgets take less than 1 second to
train per build chain, on commodity hardware. Therefore,
such regression models can be trained on the fly and then
used immediately for detecting anomalies. Compared to those
methods, Env2Vec and RFNNall require about 30 minutes
training time on commodity hardware. Therefore, they must
be periodically trained and stored. Overall, our Env2Vec

12



Env2Vec: Accelerating VNF Testing with Deep Learning Conference’17, July 2017, Washington, DC, USA

Table 7. The under-performing test execution vs. the rest in
the 11 test executions when γ = 1 with the information of the
number of examples covering the testbed of a target execution
and the coverage (in %) of the testbed over all training data.

Under-performing case The remaining cases
AT 0.5 1.0
# of examples 17 12, 313 ± 5, 097
Coverage (%) 0.004 3.15 ± 0.014

model requires less than 10MB storage space, for a file con-
taining the environment embeddings and the DL model.

Another limitation of Env2Vec is that limited coverage of
some EM in the training dataset can result in reduced perfor-
mance as the embeddings cannot be properly learned for those
EM. For example, we noticed that the Env2Vec results of
AT in Table 5 when γ = 1 is caused by one under-performing
case out of the 11 cases, with the other 10 having AT = 1. A
detailed investigation shows that the under-performing case
has much lower coverage with only 17 examples in the train-
ing data for the corresponding testbed compared to other 10
cases as shown in Table 7. This shows that the coverage of
an environment within the training data is an important is-
sue that affects the performance of Env2Vec, and can result
in unsatisfactory performance for test executions from un-
derrepresented environments. In addition, it is worth noting
that the unseen environments in Section 4.3 refer to those
can be constructed by known environment embeddings (i.e.,
embeddings covered in the training data). For instance, it is
challenging to apply Env2Vec in a new environment with
a new testbed which has not been appeared in the training
data before since we cannot construct the corresponding envi-
ronment embeddings. This also leads us to suggest test case
executions by testing engineers to be as balanced as possible,
especially in terms of the underlying testbeds.

Regarding anomalies, we evaluated Env2Vec based on
the labels from testing engineers for the set of alarms flagged
by at least one of the implemented approaches. However,
it is also important to understand whether there are certain
types of anomalies that are out of the scope of Env2Vec, or
whether Env2Vec is able to flag unknown anomalies (i.e.,
which have not appeared before). Such an evaluation would
require a complete set of manual annotations of all anomalies
(not just those flagged by an algorithm) for test executions
from different environments.

Despite the limitations discussed above, these promising
results for software testing with DL open many interesting fu-
ture research directions. One example would be incorporating
the attention mechanism [3, 42], which allows a DL model
to focus on the certain relevant parts of the input. This could
be useful to learn relationships between metric values from
previous timesteps. In addition, a deeper analysis of the contri-
butions of different groups of CFs or different EM could help

to reduce the complexity of Env2Vec. For example, starting
with the complete Env2Vec model and using a “hold out”
strategy to remove a set of CFs or EM to investigate how the
performance changes [18].

Finally, we mention that more automated ways of mapping
VNF configuration options to environment metadata would
be an interesting direction for future research. For example,
as discussed in Section 4.1.1, a VNF like Snort has many
possible configurations and ruleset options that could be in-
corporated as environment metadata. However, the current
process would require a Snort expert to manually select which
such options are important to performance. Simply taking all
possible configuration options would likely lead to an em-
bedding space that is too large for practical purposes, and
therefore likely run into issues of data sparsity.

7 Conclusions
In this paper, we have introduced a deep learning architecture
in the software testing workflow of virtual network functions,
VNFs. The key advantage of this approach is to automate the
detection of defects and bugs in new software builds by identi-
fying performance degradation and informing the engineer. A
central contribution relates to using environment embeddings
to abstract the stack deployments from the machine learning
models, which allows to 1) cope with the high-dimensionality
of cloud parameters, 2) create a unique easy-to-maintain uni-
versal model and 3) extrapolate such model to previously
unseen environments. Env2Vec, uses sophisticated neural
networks to characterize the resource usage of the VNFs,
and contextual anomaly detection to pinpoint performance
issues in new builds. We have shown, in the evaluation, that a
single model combined with environments embeddings can
achieve state-of-the-art accuracy in modeling resources and
detecting performance issues in software updates – even when
compared to multiple models, each specifically crafted for
the running environment. This result is key as it shows that
Env2Vec is scalable and feasible to adopt by testing en-
gineers. By treating the different combinations of testbeds
and software builds as embeddings, which are learned at
training time with a centralized view of data, Env2Vec can
also be used extrapolate predictions to unseen deployments
proactively as shown in Section 4.3. In the future, we will
investigate more sophisticated prediction methods and extend
the embeddings with more testing types and VNF KPIs.

A Appendix – Env2Vec Formal Definitions
FNNs for capturing contextual features. The FNN part of
Env2Vec consists of hidden layers formulated as follows:
qt = σ (W(q)at + bq), where σ denotes the sigmoid function:
s(x) = 1

1+e−x , W(q) is a weight matrix for the input at, and bq
denotes a bias term. In this paper, the evaluation is performed
with the FNN component having one hidden layer. The input
vector at = [at1, · · · ,a

t
m] consists of the CF values.

13



Conference’17, July 2017, Washington, DC, USA Guangyuan Piao, Patrick K. Nicholson, and Diego Lugones

GRUs for incorporating resource history. A GRU consists
of two inputs: ht−1, denoting the information (output) from the
previous timestep t-1, and yt, denoting the value at the current
timestep. The output of a GRU is the information to be passed
to the next timestep. GRUs have several vectors so called
gates for controlling the information to be passed through
the network. The first one is the update gate zt for timestep
t , which can be defined as follows: zt = σ (W(z)yt +U(z)ht−1),
where σ denotes the sigmoid function, W(z) and U(z) are
weight matrices for the input yt and the output from the pre-
vious timestep ht−1. The update gate determines how much
information from previous timesteps should be considered.

The second gate is called reset gate. In contrast to the
update gate, the reset gate determines how much informa-
tion from the past should be forgotten with the following
formula: rt = σ (W(r)yt + U(r)ht−1), where W(r) and U(r) are
weight matrices of the reset gate. rt is then used to calculate
the current memory content h′t with the following formula:
h′t = f (W(h)yt + rt ⊙ U(h) · ht−1), where f (·) is an activa-
tion function (we empirically adopt the ReLu [32] activation
function based on the model performance on training and
validation datasets), W(h) and U(h) are weight matrices, and
⊙ denotes the element-wise (Hadamard) product of two vec-
tors. As rt ranges from 0 to 1, rt ⊙ U(h) · ht−1 denotes how
much information from the previous timesteps should be re-
moved. Finally, the current memory content h′t, the previous
hidden state ht−1 and the update gate are used to determine
the current hidden state ht: ht = (1 − zt) ⊙ h′t + zt ⊙ ht−1.

A.1 Model Training
Here, we describe the training details of Env2Vec includ-
ing the loss function, regularization details for preventing
overfitting, and how the model is maintained.

Loss function. In order to learn the parameters of proposed
model such as W(z) and W(r), we need to have sample data
and a predefined loss function. The objective of training is
to learn those parameters automatically in order to minimize
the loss on the sample data. [29, 30]. We use Mean Squared
Error (MSE = 1

N
∑N

i=1(yi − y ′
i )
2) as our loss function to train

our proposed model. where N denotes the number of total
training examples, yi denotes a resource utilization value,
and y ′

i denotes the predicted value by our model associated
with yi . To learn the parameters of our proposed approach
for minimizing the loss, we use the Adam update rule [25] to
train the model on the training set.

Regularization. Overfitting is a crucial problem in training
neural networks, which denotes a learned neural network
model fits a training set well but is failing to fit unseen data
(e.g., examples in a separate test set) [39] and does not gener-
alize well. To prevent overfitting, we adopt the widely used
regularization techniques of dropout [39], where randomly
selected neurons are ignored during training, and an early

stopping strategy, which stops the training if there is no im-
provement on a validation set.

B Appendix – Abbreviations
This section lists the various abbreviations and notation used
throughout the paper, refer to for more details Table 8.

References
[1] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha. Unsupervised real-time

anomaly detection for streaming data. Neurocomputing, 262:134–147,
2017.

[2] S. Ayoubi, N. Limam, M. A. Salahuddin, N. Shahriar, R. Boutaba,
F. Estrada-Solano, and O. M. Caicedo. Machine Learning for Cognitive
Network Management. IEEE Communications Magazine, 56(1):158–
165, 2018.

[3] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473,
2014.

[4] P. Barlet-Ros, G. Iannaccone, J. Sanjuàs-Cuxart, and J. Solé-Pareta.
Predictive resource management of multiple monitoring applications.
IEEE/ACM Transactions on Networking (TON), 19(3):788–801, 2011.

[5] Y. Bengio, A. Courville, and P. Vincent. Representation Learning: A
Review and New Perspectives. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(8):1798–1828, 2013.

[6] F. M. Bianchi, E. Maiorino, M. C. Kampffmeyer, A. Rizzi, and
R. Jenssen. An overview and comparative analysis of recurrent
neural networks for short term load forecasting. arXiv preprint
arXiv:1705.04378, 2017.

[7] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen.
Fingerprinting the datacenter: automated classification of performance

C
on

ce
pt

s

CPU Central Processing Unit
DB or TSDB Database or Time-series database

HTTP Hyper-text transfer protocol
JSON JavaScript object notation
KDN Knowledge defined networking
KPI Key performance indicators
NLP Natural language processing
VNF Virtual network function

M
et

ri
cs

CF Contextual Features
EM Environment Metadata
PM Performance Metrics
RU Resource Utilization
WM Workload Metrics

M
et

ho
ds

DL Deep Learning
FNN Feed-forward Neural Network
GRU Gated Recurrent Neural Networks
ML Machine Learning

RNN Recurrent Neural Networks
SVR Support Vector Regression

E
va

lu
at

io
n

MAE Mean absolute error
MSE Mean squared error
CDF Cumulative Distribution Function
AT True Positive Alarms
AF False Positive Alarms
γ Tunable confidence threshold

Table 8. Abbreviations, acronyms and notation.

14



Env2Vec: Accelerating VNF Testing with Deep Learning Conference’17, July 2017, Washington, DC, USA

crises. In Proceedings of the 5th European conference on Computer
systems, pages 111–124. ACM, 2010.

[8] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase representations using
RNN encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

[9] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski. A
knowledge plane for the internet. In Proceedings of the 2003 confer-
ence on Applications, technologies, architectures, and protocols for
computer communications, pages 3–10. ACM, 2003.

[10] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and J. Symons. Cor-
relating Instrumentation Data to System States: A Building Block for
Automated Diagnosis and Control. In OSDI, volume 4, page 16, 2004.

[11] N. M. Comcast. From engineering operations to site reliability engi-
neering. San Francisco, CA, 2017. USENIX Association.

[12] T. Dai, J. He, X. Gu, S. Lu, and P. Wang. Dscope: Detecting real-world
data corruption hang bugs in cloud server systems. In Proceedings
of the ACM Symposium on Cloud Computing, pages 313–325. ACM,
2018.

[13] J. Gao, G. Jiang, H. Chen, and J. Han. Modeling probabilistic measure-
ment correlations for problem determination in large-scale distributed
systems. In Distributed Computing Systems, 2009. ICDCS’09. 29th
IEEE International Conference on, pages 623–630. IEEE, 2009.

[14] R. Gonzalez, A. Garcia-Duran, F. Manco, M. Niepert, and P. Vallina.
Network Data Monetization Using Net2Vec. In Proceedings of the
SIGCOMM Posters and Demos, SIGCOMM Posters and Demos ’17,
pages 37–39, New York, NY, USA, 2017. ACM.

[15] R. Gonzalez, F. Manco, A. Garcia-Duran, J. Mendes, F. Huici, S. Nic-
colini, and M. Niepert. Net2Vec: Deep Learning for the Network.
In Proceedings of the Workshop on Big Data Analytics and Machine
Learning for Data Communication Networks, Big-DAMA ’17, pages
13–18, New York, NY, USA, 2017. ACM.

[16] D. R. Google. Building successful SRE in large enterprises—one year
later. Santa Clara, CA, 2018. USENIX Association.

[17] M. A. Hayes and M. A. M. Capretz. Contextual anomaly detection
framework for big sensor data. Journal of Big Data, 2(1):2, 2015.

[18] L. Hong, A. S. Doumith, and B. D. Davison. Co-factorization machines:
modeling user interests and predicting individual decisions in twitter. In
Proceedings of the sixth ACM international conference on Web search
and data mining, pages 557–566, 2013.

[19] J. Hyun, N. V. Tu, and J. W. Hong. Towards knowledge-defined net-
working using in-band network telemetry. In NOMS 2018 - 2018
IEEE/IFIP Network Operations and Management Symposium, pages
1–7, 2018.

[20] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth. Performance
anomaly detection and bottleneck identification. ACM Computing
Surveys (CSUR), 48(1):4, 2015.

[21] H. Jmila, M. I. Khedher, and M. A. El Yacoubi. Estimating VNF
Resource Requirements Using Machine Learning Techniques. In Inter-
national Conference on Neural Information Processing, pages 883–892.
Springer, 2017.

[22] I. Jolliffe. Principal component analysis. In International encyclopedia
of statistical science, pages 1094–1096. Springer, 2011.

[23] Keras. The python deep learning library. "https://keras.io/", 2019.
[24] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker.

In-band network telemetry via programmable dataplanes. In ACM
SIGCOMM, 2015.

[25] D. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[26] Knowledge-Defined-Networking. Training datasets. "http:
//knowledgedefinednetworking.org/", 2019.

[27] Y. Koren, R. Bell, and C. Volinsky. Matrix Factorization Techniques
for Recommender Systems. Computer, 42(8):30–37, aug 2009.

[28] A. A. Mahimkar, H. H. Song, Z. Ge, A. Shaikh, J. Wang, J. Yates,
Y. Zhang, and J. Emmons. Detecting the Performance Impact of Up-
grades in Large Operational Networks. SIGCOMM Comput. Commun.
Rev., 40(4):303–314, aug 2010.

[29] A. Mestres, E. Alarcón, and A. Cabellos. A machine learning-based
approach for virtual network function modeling. In 2018 IEEE Wireless
Communications and Networking Conference Workshops (WCNCW),
pages 237–242, 2018.

[30] A. Mestres, A. Rodriguez-Natal, J. Carner, P. Barlet-Ros, E. Alar-
cón, M. Solé, V. Muntés-Mulero, D. Meyer, S. Barkai, M. J. Hibbett,
G. Estrada, K. Ma’ruf, F. Coras, V. Ermagan, H. Latapie, C. Cassar,
J. Evans, F. Maino, J. Walrand, and A. Cabellos. Knowledge-Defined
Networking. SIGCOMM Comput. Commun. Rev., 47(3):2–10, sep
2017.

[31] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Dis-
tributed representations of words and phrases and their composition-
ality. In Advances in neural information processing systems, pages
3111–3119, 2013.

[32] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltz-
mann machines. In Proceedings of the 27th international conference
on machine learning (ICML-10), pages 807–814, 2010.

[33] A. Nistor, P.-C. Chang, C. Radoi, and S. Lu. Caramel: Detecting
and fixing performance problems that have non-intrusive fixes. In
2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, volume 1, pages 902–912. IEEE, 2015.

[34] Postgresql. The worldś most advanced open source relational database.
"https://www.postgresql.org/", 2019.

[35] Prometheus. From metrics to insight. "https://prometheus.io/", 2019.
[36] S. Rendle. Factorization Machines with libFM. ACM Trans. Intell. Syst.

Technol., 3(3):57:1—-57:22, may 2012.
[37] Scikit-Learn. Machine learning in python. "http://scikit-learn.org",

2019.
[38] Snort. Snort. "https://www.snort.org/", 2019.
[39] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. Journal of Machine Learning Research, 15(1):1929–
1958, 2014.

[40] A. T. Tenable. Breaking in a new job as an SRE. Santa Clara, CA,
2018. USENIX Association.

[41] Tensorflow. An end-to-end open source machine learning platform.
"https://www.tensorflow.org/", 2019.

[42] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008, 2017.

[43] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang. Machine Learning for
Networking: Workflow, Advances and Opportunities. IEEE Network,
32(2):92–99, 2018.

[44] C. M. Woodside, G. Franks, and D. C. Petriu. The future of software
performance engineering. In L. C. Briand and A. L. Wolf, editors, Inter-
national Conference on Software Engineering, ISCE 2007, Workshop
on the Future of Software Engineering, FOSE 2007, May 23-25, 2007,
Minneapolis, MN, USA, pages 171–187. IEEE Computer Society, 2007.

[45] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and A. Fox. Ensembles
of models for automated diagnosis of system performance problems. In
2005 International Conference on Dependable Systems and Networks
(DSN’05), pages 644–653, 2005.

[46] S. Zhang, L. Yao, and A. Sun. Deep Learning based Recommender
System: A Survey and New Perspectives. CoRR, abs/1707.0, 2017.

[47] M. Zorzi, A. Zanella, A. Testolin, M. D. F. De Grazia, and M. Zorzi.
Cognition-based networks: A new perspective on network optimization
using learning and distributed intelligence. IEEE Access, 3:1512–1530,
2015.

15

"https://keras.io/"
"http://knowledgedefinednetworking.org/"
"http://knowledgedefinednetworking.org/"
"https://www.postgresql.org/"
"https://prometheus.io/"
"http://scikit-learn.org"
"https://www.snort.org/"
"https://www.tensorflow.org/"

	Abstract
	1 Introduction
	2 Motivation
	3 System Overview
	3.1 Env2Vec – Main Components
	3.2 Putting All Together

	4 Env2Vec Evaluation
	4.1 VNF Modelling using Benchmark Datasets
	4.2 Env2Vec in the Software Testing Workflow
	4.3 Testing Unseen Environments, Embeddings Reused

	5 Related Work
	6 Discussion
	7 Conclusions
	A Appendix – Env2Vec Formal Definitions
	A.1 Model Training

	B blackAppendix – Abbreviations
	References

