
Financial Aspect and Sentiment Predictions with Deep Neural
Networks: An Ensemble Approach

Guangyuan Piao
Insight Centre for Data Analytics

Data Science Institute
National University of Ireland, Galway

Galway, Ireland
guangyuan.piao@insight-centre.org

John G. Breslin
Insight Centre for Data Analytics

Data Science Institute
National University of Ireland, Galway

Galway, Ireland
john.breslin@nuigalway.ie

ABSTRACT
In this paper, we describe our ensemble approach for sentiment
and aspect predictions in the financial domain for a given text. This
ensemble approach uses Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) with a ridge regression
and a voting strategy for sentiment and aspect predictions, and
therefore, does not rely on any handcrafted feature. Based on 5-cross
validation on the released training set, the results show that CNNs
overall perform better than RNNs on both tasks, and the ensemble
approach can boost the performance further by leveraging different
types of deep learning approaches.
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1 INTRODUCTION
Deep learning [10] techniques such as Convolutional Neural Net-
works (CNNs) [11] for processing data in the form ofmultiple arrays,
or Recurrent Neural Networks (RNNs) such as Long Short-Term
Memory neural networks (LSTMs) [5] for tasks with sequential
inputs, have been widely adopted in various research domains such
as computer vision [4, 9], natural language processing (NLP) [6, 7]
including sentiment analysis [3], recommender systems [14] etc.

More recently, [2] proposed an ensemble approach using sev-
eral deep neural networks (DNNs) such as CNNs and LSTMs for
one of the tasks at the sentiment analysis challenge SemEval20171,
and their approach outperforms other methods for the sentiment
analysis task on Twitter2. Deep learning approaches have also been
applied to the sentiment analysis in the financial domain which
plays a significant role in predicting the market reaction [3]. Mo-
tivated by the state-of-the-art results on different tasks including
sentiment analysis, we introduce our ensemble approach with dif-
ferent types of DNNs for tackling the first task at the Financial
Opinion Mining and Question Answering (FIQA) challenge3, which
is co-located with the Web Conference 2018.

1http://alt.qcri.org/semeval2017/index.php?id=tasks
2https://twitter.com
3https://sites.google.com/view/fiqa
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1.1 Task1: Sentiment and Aspect Predictions in
the Financial Domain

Given a text t and a target as an input, the task is to predict its
sentiment score ys and its aspect labels ya at the level two of an
financial aspect tree. An example of a training instance is shown as
below:

"55": {
"sentence": "Tesco Abandons Video-Streaming

Ambitions in Blinkbox Sale",
"info": [

{
"snippets": "['Video-Streaming Ambitions']",
"target": "Blinkbox",
"sentiment_score": "-0.195",
"aspects": "['Corporate/Stategy']"

},
{

"snippets": "['Tesco Abandons Video-Streaming
Ambitions ']",

"target": "Tesco",
"sentiment_score": "-0.335",
"aspects": "['Corporate/Stategy']"

}
]

}

Table 1 shows the details of the dataset for task 1. There are two
types of text; one is Twitter posts and the other is news headlines
in the financial domain. Overall, there are 28 distinct aspects for all
posts and headlines in the released training dataset.

Table 1: Dataset statistics for task 1.

Posts Headlines

# of examples 675 436
# of multi-labeled 0 30
max length 40 19
distinct aspects 28

http://alt.qcri.org/semeval2017/index.php?id=tasks
https://twitter.com
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2 DEEP NEURAL NETWORKS
In order to feed into DNNs such as CNNs, we first convert each text
as a sequence of words, and map each word to its corresponding
embedding. Therefore, a text is represented as a matrix of sizem′×d ,
wherem′ is the number of words in the text and d is the dimension
of the word embedding space. We used the zero-padding strategy
in order to make all texts have the same lengthm. The final matrix
of a given text T ∈ Rm×d (m = 50 for our approach) is used as an
input to one of the DNNs which we will describe below.

2.1 Convolutional Neural Networks
CNNs apply convolutional filters to the input matrix with a filtering
matrix f ∈ Rh×d whereh is the filter size which denotes the number
of words it spans. This operation can be defined as follows:

ci = a(
∑
j,k

fj,k (T[i :i+h−1])j,k + b) (1)

whereb ∈ R denotes the bias term, anda(·) is a non-linear activation
function. We used the well-known ReLu activation here. Different
filter sizes such as [1, 2, 3] or [3, 4, 5] can be used for CNNs, and
there can be multiple filters for each filter size.

Next, CNNs can apply a pooling operation to each convolution
with the hope to extract the most important feature for each con-
volution. For example, the max-pooling cmax =max(c) retains the
maximum value for each convolution. Finally, the output from each
convolution is concatenated into a single vector which can be seen
as the text embedding for a given text learned by CNNs.

For CNNs, we used the following settings for their hyperparam-
eters for training:

Table 2: Hyperparameter settings for CNNs.

Hyperparameter Settings

pooling max pooling
filter sizes [1, 2, 3], [3, 4, 5] or [5, 6, 7]
# of filters 200 - 300

2.2 Long-Short Term Memory Networks
The first step in LSTM is going through a forget gate layer. This layer
decides what information to keep from the cell state by looking at
ht−1 and xt , as shown in Equation 2:

ft = σ (Wf · [ht−1,xt ] + bf ) (2)

where [ht−1,xt ] denotes the concatenated vector of ht−1 and xt , σ
is is a sigmoid function: σ (x) = 1

1+e−x , and bf denotes a bias term.
Wf is a weight vector to be learned for the forget gate layer.

Next, LSTM decides what new information to store in the cell
state, which consists of two parts. The first part is an input gate
layer, which is defined as below:

it = σ (Wi · [ht−1,xt ] + bi ). (3)

The second part is a tanh layer (Equation 4), which creates a vector
of new candidate values, C̃t , that could be added into the cell state.

C̃t = tanh(WC · [ht−1,xt ] + bC ) (4)

Finally, the new cell state Ct will be created based on linear inter-
actions of the previous cell state Ct−1, ft , it , and C̃t as follows.

Ct = ft ∗Ct−1 + it ∗ C̃t (5)

The last step is filtering the cell state to generate the final output,
which can be formulated as below:

ot = σ (Wo · [ht−1,xt ] + bo ),

ht = ot ∗ tanh(Ct )
(6)

Here, ot decides what parts of the cell state to keep for the final out-
put, and the cell state goes through a tanh layer before multiplying
by ot .

Another RNNs we used for Gated Recurrent Unit (GRU) [1] is a
variant of LSTMs which has less parameters to tune.

For DNNs, we used the following hyperparameter settings for
training:

Table 3: Hyperparameter settings for training DNNs.

Hyperparameter Settings

embedding dimension 200
dropout rate 0.5
batch size 40
epoches 100 - 300

2.3 Regularization and Training
For regularization, we use the dropout [12] in the same way as [13].
Dropout, which refers to dropping out units in a neural network,
is one of the widely used regularization techniques for preventing
overfitting in training neural networks. Individual nodes are either
“disabled” with probability 1 − p or kept with probability p. The
“thinned” outputs of a hidden layer are then used as an input to
the next layer. In this way, it prevents units from co-adapting and
forces them to learn useful features individually.

We also constrain l2-norms of the weight vectors to a threshold
ϵ as below, which normalizes a word vectorw so that its l2-norm
is equal to ϵ , and will be performed whenever the l2-norm ofw is
bigger than ϵ (ϵ = 3 for our approach).

∥w ∥2 = ϵ, i f ∥w ∥2 > ϵ . (7)
To learn the parameters for minimizing the loss, we use a Sto-

chastic Gradient Descent (SGD) with the Adam update rule [8] to
train the model until the loss has converged.

3 PROPOSED APPROACH
In this section, we describe our proposed approach for the Financial
Aspect and Sentiment Prediction task with Deep neural networks
(Deep-FASP).

Figure 1 shows an overview of our proposed approach for
predicting the aspects and the sentiment score of a given text. It
consists of five steps from an input to the predicted output.

• Input. Each headline and post is a sequence of words.



Figure 1: An overview of our proposed approachDeep-FASP.

• Look up. Those words are represented as word embeddings.

• DNNs. The sequence of word embeddings is used as an
input to multiple DNNs such as CNNs, LSTMs, and GRUs.
Each DNN outputs their predicted labels for the aspect
classification task, and outputs their measured sentiment
scores for the task of sentiment prediction.

• Prediction. Finally, the outputs from multiple DNNs are
aggregated for predicting the final results. The output of
aspect classification is the predicted label with the highest
votes based on the votes from all DNNs. For sentiment score
prediction, we use a ridge regression to combine the outputs
from different DNNs to produce the final sentiment score.

For both tasks, each DNN model (e.g., CNNs or LSTMs) has
the same archietecture for retrieving the representation of a given
text. Given the text representation learned by a DNN, we design a
customized fully connected and output layer for each task, which
will be described in the following.

3.1 Sentiment Prediction
Figure 2 illustrates the model architecture for predicting the senti-
ment score of a given text. The fully connected layer for this task
has 30 units as the settings in [2], and the final sentiment score is
predicted with a linear regression on those 30 units.

We use the mean squared error as below for the loss function of
sentiment prediction.

Ls =

∑n
i=1(y

′
s (i) − ys (i))

2

n
(8)

Figure 2: The Deep-FASP architecture for sentiment predic-
tion.

where n is the number of training instances, y′s (i) and ys (i) denote
the predicted and ground truth sentiment scores for i-th instance,
respectively.

3.2 Aspect Prediction
Figure 3 shows the architecture for predicting aspect labels. As we
can see form the figure, the fully connected layer for this task has
80 units, and the final output layer has the same number of units
as the distinct aspect labels.

Figure 3: The Deep-FASP architecture for aspect prediction.

The sigmoid or softmax function is applied at the end in order
to transform the output layer into a boolean vector where ones
denote corresponding aspects. Applying the sigmoid or softmax
function denotes that we treat the problem as multi-label or multi-
class problem, respectively. Although the first released dataset was
a multi-labeled dataset, the final one has only one multi-labeled
instance which is closer to a multi-class problem. In this regard, we
tested both sigmoid and softmax layers for the final prediction.

For the aspect prediction task, we use the cross-entropy loss as
our loss function to optimize, which is defined as below:



La = −
1
n

n∑
i=1

[ya (i) logy′a (i) + (1 − ya (i))loд(1 − y′a (i))] (9)

where y′a (i) and ya (i) denote the predicted and ground truth aspect
vectors for i-th instance, respectively.

Note that when the final layer is a sigmoid layer for predicting
aspects on the test set, the values in the final aspect vector are
rounded to 0 or 1 (e.g., [0, 1, ..., 0]). In contrast, when the final layer
is a softmax layer, only the label with the highest value will be
remained.

3.3 Pre-processing Texts
We pre-process the raw data (headlines and posts) as follows before
the training stage.

• Converts both texts and targets as lowercase.

• Targets are replaced by the $target$ token.

• URLs are replaced by the $URL$ token.

• @mentions are replaced by the $mention$ token.

• Any letter repeated more than two times in a text is replaced
by two repetitions of that letter, e.g., “fooooo” is replaced by
“foo”.

3.4 Pre-trained Word Embeddings
Considering the training set is not large for the given task, we
used a Twitter corpus4 for sentiment analysis to pre-train word
embeddings.We used a CNNwith the filter sizes [1, 2, 3] to pre-train
these word embeddings.

Figure 4 shows nearest words of the word “good” based on pre-
trained word embeddings. As we can see from the figure, similar
words in terms of sentiment are nearby each other in the latent
space. These embeddings were used to initialize the word embed-
dings for both sentiment and aspect prediction tasks.

4 RESULTS
In this section, we describe the experimental results based on 5-
cross validation on the released training set for sentiment and aspect
prediction tasks.

4.1 Sentiment Prediction
Table 4 shows the results for predicting sentiment scores based on
DNNs and two simple baselines. The results are obtained by using
5-cross validation. PredictZero always predicts zero for any given
text, and SVR is a SVM model for regression where each word is
denoted as a boolean feature.

As we can see from the table, CNN [1, 2, 3] provides the best
performance as a single predictor followed by CNN [3, 4, 5] and
CNN [5, 6, 7]. Overall, CNNs perform better than RNNs in our
experiment with 5-cross validation. The ensemble approach using a

4http://thinknook.com/twitter-sentiment-analysis-training-corpus-dataset-2012-09-22/

ridge regression (the regularization parameter is tuned to 95 based
on the results with 5-cross validation) for different models with
different settings in the table except Bi-GRU outperforms any single
model, with 0.0837 and 0.4683 for MSE and R2 score respectively.

Finally, we trained this ensemble model based on the whole
training dataset in order to predict the sentiment scores for the
texts in the test dataset.

Table 4: The results of financial sentiment prediction based
on 5-cross validation in terms of MSE and R2 score. The val-
ues in [] denotes filter sizes used for CNNs.

No. Approach MSE R2

1 SVR 0.1566 0.0115
2 PredictZero 0.1737 -0.0984

3 CNN [1, 2, 3] 0.0973 0.3841
4 CNN [3, 4, 5] 0.0996 0.3705
5 CNN [5, 6, 7] 0.1064 0.3278
6 Bi-GRU 0.1110 0.2985
7 Bi-LSTM 0.1076 0.3196
8 GRU 0.1067 0.3262

9 Deep-FASP (Ensemble) 0.0926 0.4144

4.2 Aspect Prediction
Table 5 shows the results for aspect prediction based on DNNs and
two simple baselines using Ridge Regression and Random Forest
for aspect classification where each word is denoted as a boolean
feature. The results are obtained by using 5-cross validation.

Similar to the results for sentiment prediction, CNNs perform
better than RNNs in the aspect prediction task as well. The voting
strategy with those models in the table did not yield better perfor-
mance compared to using CNN[1, 2, 3]. We also observe that using
the sigmoid layer (CNN[1, 2, 3] - ML), i.e., treat the problem as a
multi-label classification task, did not improve the performance but
decrease the performance significantly. Therefore, we assume the
aspect prediction task as a multi-class problem, and used several
CNN[1, 2, 3] models with different settings for aspect prediction
without incorporating other models. As a result, the voting strategy
has slightly better performance with 0.6530 for the accuracy.

Finally, we trained this voting approach based on the whole
training dataset in order to predict the aspect labels for the texts in
the test dataset.

5 CONCLUSIONS AND FUTUREWORK
This paper descried Deep-FASP which is an ensemble approach
for sentiment and aspect prediction tasks in the financial domain
using deep learning approaches such as CNNs without handcrafted
features. The results based on 5-cross validation on the training
dataset show that CNNs perform better than RNNs such as LSTMs
or GRUs, and the ensemble approach provides the best performance
in both tasks compared to any single model. As the final results of
the challenge is not available at the time of writing, more details of

http://thinknook.com/twitter-sentiment-analysis-training-corpus-dataset-2012-09-22/


Figure 4: Nearest words of the word “good” from the pre-trained word embeddings.

Table 5: The results of financial aspect prediction based on
5-cross validation in terms of accuracy. The values in [] de-
notes filter sizes used for CNNs. ML denotes multi-label.

No. Approach Accuracy

1 Ridge Regression 0.3634
2 Random Forest 0.2749

3 CNN [1, 2, 3] 0.6436
4 CNN [3, 4, 5] 0.6180
5 CNN [5, 6, 7] 0.5940
6 Bi-GRU 0.5085
7 Bi-LSTM 0.4915
8 GRU 0.5274
9 CNN [1, 2, 3] - ML 0.5581

10 Voting 0.6530

our approach and the performance compared to other participated
teams will be updated on https://github.com/parklize/FIQA.
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