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Abstract—Time division multiple access (TDMA) is the
medium access control strategy of choice for multihop networks
with deterministic delay guarantee requirements. As such,
many Internet of Things applications use protocols based on
time division multiple access. Optimal slot assignment in such
networks is NP-hard when there are strict deadline require-
ments and is generally done using heuristics that give sub-
optimal transmission schedules in linear time. However, existing
heuristics make a scheduling decision at each time slot based on
the same criterion without considering its effect on subsequent
network states or scheduling actions. Here, we first identify a
set of node features that capture the information necessary for
network state representation to aid building schedules using
Reinforcement Learning (RL). We then propose three different
centralized approaches to RL-based TDMA scheduling that
vary in training and network representation methods. Using
RL allows applying diverse criteria at different time slots while
considering the effect of a scheduling action on meeting the
scheduling objective for the entire TDMA frame, resulting in
better schedules. We compare the three proposed schemes in
terms of how well they meet the scheduling objectives and their
applicability to networks with memory and time constraints.
One of the schemes proposed is RLSchedule, which is partic-
ularly suited to constrained networks. Simulation results for a
variety of network scenarios show that RLSchedule reduces the
percentage of packets missing deadlines by up to 60% compared
to the best available baseline heuristic.

I. INTRODUCTION

The availability of low-cost and low-form factor sensors
and actuators in recent times has resulted in their usage in a
wide variety of applications such as surveillance, pollution
monitoring, energy monitoring and control and predictive
maintenance and automation of factories. Some of these
applications have strict Quality of Service (QoS) require-
ments – especially those of low delay, high reliability and
throughput. In such applications, the generated data is sent
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as packets which are associated with a deadline and packets
missing their deadlines can lead to catastrophic results. In
light of the strict QoS requirements combined with the
resource-constrained nature of the devices and harsh network
conditions, design and operation of the network for such
applications is a challenging task.

One major contributor to end-to-end delay is the delay
encountered at the medium access control (MAC) layer. MAC
protocols for real-time data transfer (such as WirelessHART
[1] and IEEE 802.15.4-TSCH [2]) are based on a slot assign-
ment strategy with time division multiple access (TDMA),
which can yield deterministic delay guarantees. In most such
cases, the slot assignment is done by a central network
controller, which has knowledge of the network conditions
and builds a schedule (slot and channel assignment in multi-
channel networks) to be followed by the nodes. Optimal slot
scheduling is NP-hard [3] and hence, several heuristics have
been proposed to find a (generally sub-optimal) schedule
with low computation time. Such heuristics reduce the search
space by focusing on a (single) criterion (e.g., minimum
laxity, minimum proportional deadline) for scheduling at any
time slot, with a myopic view based on the state of packet
queues at that instant.

In this paper, we propose RLSchedule, a framework that
uses Reinforcement Learning (RL) for TDMA slot schedul-
ing in networks with strict time constraints. In RL, an optimal
policy is learned by taking an action (based on the system’s
current state) from a set of actions at each step and observing
a reward in return [4]. The optimal policy is one that
maximizes the overall long-term reward gained. Using RL
for scheduling allows the scheduler to apply diverse criteria
for scheduling at each time slot. In addition, the scheduler
can also consider the effect of an action on the subsequent
states that the network enters and possible actions therein
(within a TDMA frame). RLSchedule’s state, action and
reward functions are crafted carefully, so that the scheduler
includes schedules that better meet the scheduling objective
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in its search space and finds the best schedule among them.
For networks with strict deadline requirements, a network

scenario (the network graph together with the packet dead-
line, periodicity and route information) is said to be schedu-
lable if a schedule where all packets meet their deadlines can
be found. Such a schedule is called a feasible schedule. How-
ever, depending on the network topology, there may not exist
a schedule where all packets meet their deadline. The goal of
scheduling for networks with strict time delay requirements
should in fact be to find a schedule where the least possible
number of packets miss the deadline by the least amount
of time. This provides a much finer basis for checking if a
schedule meets the application delay requirements and hence
for comparing different scheduling heuristics. In view of this,
the major contributions of this paper are:
• identification of a set of node features that help in state

representation for RL-based scheduling.
• proposal of three RL-based schemes for centralized

TDMA scheduling in networks with strict packet dead-
lines. These schemes vary in the way the RL agent is
trained and in the way the network state is represented.

• study of the suitability of each of these schemes for
building TDMA schedules in such networks in terms of
how well they meet the scheduling goal for previously
seen or unseen network scenarios, the time taken for
building the schedule and the memory required at the
network controller to store the built model(s).

• evaluation of the performance of the scheme most
suitable to constrained networks (called RLSchedule)
for different number of network nodes, deadline require-
ments and channels.

Simulation results show that RLSchedule achieves the
scheduling objective better compared to baseline and popular
heuristics in the literature. In case multiple schedules are
possible for a particular scenario with no missed packets,
RLSchedule finds a schedule with lower packet delay than
existing heuristics. Otherwise, it finds a schedule where fewer
number (by up to 60%) of packets miss their deadline by a
smaller time margin compared to existing heuristics.

II. RELATED WORK

TDMA scheduling heuristics for networks requiring guar-
anteed delay was studied previously. Most of them [5]–[7]
propose heuristics with the goal of minimizing the TDMA
frame length with slot-reuse. However, standards such as
WirelessHART do not allow concurrent transmissions in the
same channel in order to avoid interference. Also, most of
the past work has focused on convergecast. In this paper, we
focus on the more general problem of any-to-any communi-
cation requiring strict delay guarantee without slot reuse.

The closest to our network model is the work in [3],
where the authors propose the Conflict-Free Least Laxity
First (CFLLF) heuristic that improves schedulability of a set
of network scenarios compared to other baseline heuristics.
For applications requiring strict guarantees but with network

scenarios which are not schedulable, reducing the number of
packets missing the deadline and the time by which they miss
the deadline is a finer and important goal to achieve than that
in [3]. Our proposed scheme achieves this goal much better
than CFLLF, without adversely affecting the schedulability.

Reinforcement Learning (RL) has shown considerable
promise in learning better resource allocation policies (e.g.,
[8]–[11]), especially for job and task scheduling. In [12],
the authors propose an RL-based scheme for finding near-
optimal task schedules. More recently, [8] proposes Decima
for job scheduling in data processing clusters. Optimal traffic
scheduling in cellular networks using RL was studied in [10].
In [13], the authors propose an RL-based scheduler for
scheduling flows in a software-defined network to schedule
the pacing rate of the sources. Though job scheduling and
traffic scheduling are basically resource allocation problems
much like slot allocation, the state space, action space and re-
ward design is different for these problems. In [9], the authors
propose an RL-based scheduling policy for link scheduling
in backhaul networks to minimize the packet delay. Though
this is also slot scheduling, RLSchedule considers a more
general network model and has a scheduling objective based
on packet deadlines rather than the average delay. To the best
of our knowledge, RL has not been explored for TDMA slot
scheduling in networks with deadlines.

In [14], the authors propose algorithms to reserve slots
for event-based flows without adversely affecting the per-
formance of time-based flows. One of these schemes is the
virtual period (VP) method where the actual scheduling is
done using any standard heuristic such as earliest deadline
first. In this paper, we consider a mixture of event and time-
based flows to be scheduled in each hyper-frame such that the
scheduling objective is met for both types of flows. As such,
RLSchedule can be used instead of the standard heuristic
together with the VP method of [14].

III. NETWORK MODEL

In this section, we explain the network model (notation
in Table I) we consider for scheduling. For a particular
network scenario, we consider a network with N number
of devices (network nodes) that transmit data in any one
of the available M channels. Each of the devices can be
the source or destination of data. The nodes transmit data in
packets using wireless links, with each link characterised by
its packet loss probability.

Each flow of data consists of a packet that travels from
source to destination along a route and the set of flows for
the scenario is denoted by F . Flows may be of two types –
time-triggered (periodic) or event-triggered (aperiodic). Each
flow fi is associated with

1) a start time slot si when the packet is generated at the
source node,

2) a relative deadline reldi, which is the number of slots
from si before which the packet has to reach the
destination,



TABLE I
NOTATION

Symbol Meaning
N Number of nodes in the network
M Number of channels
F set of flows in the network
si start time slot of the ith flow
reldi relative deadline of the ith flow
wi priority of the ith flow
pi period of the ith flow
~Ri optimal route of the ith flow
absdi absolute deadline of the ith flow
β hyper-period of the network scenario
γi a transmission of a packet of the ith flow
uγi no. of hops from source to transmission γi
vγi no. of hops from transmission γi

to the destination
trγi remaining time of transmission γi at slot t
Γtk set of transmissions at node k at time slot t
T t set of transmissions in the network

at time slot t
Ψ set of most frequently seen network scenarios
α ratio of deadline to period of a flow
ρmin minimum exponent of period of a flow
ρmax maximum exponent of period of a flow
(x1tk, x2tk, x3tk, x4tk) features of node k in slot t
gt aggregated graph feature in slot t
(ne1tk, ne2

t
k) 2D embedding of node k in slot t

get aggregated graph embedding in slot t

3) a priority wi based on the application generating the
flow,

4) a period pi if the flow is periodic, and
5) a route ~Ri that the packet takes as it flows to the

destination. The route taken by a packet is determined
by a standard routing algorithm based on Dijkstra’s,
such that the route has minimum cumulative packet
loss probability. The number of hops from the source
to the destination along the route is denoted by hi.

The absolute deadline of a flow is the slot by which the
packet has to reach its destination and is denoted by absdi,
with absdi = reldi + si.

In centralized scheduling, the network controller has above
information about all flows, in addition to the current adja-
cency matrix for the network graph ( [15] presents a way
of facilitating this efficiently). It creates a TDMA schedule
assigning slots and channels to nodes and sends this to nodes.
It is sufficient if a schedule is found for hyper-period β, where
β is the least common multiple of all periods. A periodic flow
fi has a new packet generated at every (si + k ∗ pi)th slot
in a hyper-period, where k ∈ [0, β mod pi].

All nodes can transmit/receive as per the received schedule
until a new schedule is received. A packet generated reaches
its destination after a series of transmissions, where each
transmission (a packet at a particular hop) belonging to the
ith flow is denoted by γi. A transmission γi is characterized
by the following —

• uγi , which is the number of hops from the source to the
destination,

• vγi , which is the number of hops from γi to the
destination and

• trγi , the remaining time of a transmission γi at time
slot t is trγi = reldi − (t− si)

At any given time slot t, the set of transmissions possible
at node k is denoted by Γtk and the set of transmissions
across the entire network is ∪Ni=1Γti. Two transmissions are
non-conflicting if they do not have a common source or desti-
nation. In the absence of channel reuse across the network (as
is common with standard protocols like WirelessHART [1]
and IEEE 802.15.4-TSCH [2]), non-conflicting transmissions
can be assigned different channels in the same slot. Out of the∑N
i=1 |Γti| transmissions at slot t, the scheduling algorithm

chooses (“schedules”) a maximum of M non-conflicting
transmissions to be advanced to their next hop nodes. The
goal of scheduling is to assign slots and channels to nodes
for the hyper-period β in such a way that all flows reach their
destinations before their deadlines. Such a schedule is called
a feasible schedule. However for some network scenarios, it
may not be possible to find a feasible schedule, in which case
the goal is to minimize the number of packets missing the
deadline and by how much they miss the deadline.

A. The Optimal Scheduling Policy Baseline

As one of the baseline scheduling strategies, we consider
an optimal scheduling policy that is somewhat similar to
that in [3]. As per this policy, at each time slot t, all
possible subschedules of the transmissions in set ∪Ni=1Γti are
considered for the branch and bound scheduling tree. To
reduce complexity, those subschedules where packets miss
their deadline (i.e., transmissions with laxity < 0) are not
considered for branching, as in [3]. However, while the
optimal algorithm proposed in [3] exits once any feasible
schedule is found, our version of the optimal algorithm exits
only when a feasible schedule with the minimum possible
delay is found. This increases the complexity, but provides a
basis to check if RLSchedule can indeed find schedules that
are closer to optimal compared to other baseline heuristics
in the case of feasible schedules.

IV. RLSCHEDULE PRINCIPLES

RLSchedule uses Proximal Policy Optimization
(PPO [16]), a policy gradient method in RL for learning the
policy of the scheduler. During training, the RL agent steps
through the environment by taking a random action from the
action space and observes the instantaneous reward. After
training for enough episodes, the RL agent can converge
to an optimal policy such that the action taken at any state
leads to maximum cumulative reward for that episode. More
details on policy gradient methods and RL are in [4]. At
each step, a set of transmissions is chosen to be scheduled
in a slot. Training runs in episodes, where each episode
starts with slot 0 of the hyper-period and ends at slot β − 1.



A. State Space

To learn an efficient scheduling policy, it is necessary to
represent the network state in a way to take into consideration
the factors that affect the goal of scheduling. Let Γtk be the set
of transmissions at node k at the tth time slot. We consider
four node features x1tk to x4tk which are:
• the number of transmissions at that node, x1tk = |Γtk|
• the minimum remaining time of a transmission queued

at the node. Thus, x2tk = min∀γi∈Γt
k
(trγi)

• the maximum number of remaining hops of a transmis-
sion at the node, x3tk = max∀γi∈Γt

k
(vγi)

• the minimum ratio of remaining time and remaining
hops of a transmission at the node. Thus, x4tk =

min∀γi∈Γt
k
(
trγi
vγi

)

In addition to the above features, we also consider a simple
aggregated graph feature gt (average of the features of all the
nodes). The state of the network at any t is hence a vector
of dimension 4N+1.

B. Action Space

The total set of transmissions to be scheduled at slot t
is T t, where T t =

⋃N
i=1 Γti. Considering all the possible

subsets of T t as possible actions results in a very large
action space. To reduce the action space size, we consider
six possible actions at any slot to assign the M available
channels. The first five of them correspond to choosing the
first M non-conflicting transmissions from T t based on a
proven baseline heuristic. The baseline heuristics considered
are listed below, together with their scheduling strategy.
• Deadline Monotonic (DM) – transmissions with least

relative deadline of their flow are scheduled first.
• Earliest Deadline First (EDF) – transmissions with the

least absolute deadline are scheduled first.
• Proportional Deadline (PD) – transmissions with least

value of relative deadline divided by the total number
of hops for that flow are scheduled first.

• Earliest Proportional Deadline (EPD) – transmissions
with the least remaining time divided by the remaining
number of hops are scheduled first and

• Least Laxity First (LLF) – transmissions with the least
laxity i.e., remaining time minus the remaining number
of hops are scheduled first.

In addition to the above five actions, RLSchedule considers
a sixth possible action that sorts the nodes in the ascending
order of their features and chooses the top M non-conflicting
transmissions with the minimum set of features. In case
multiple transmissions satisfy the scheduling criteria (e.g.,
have the same least relative deadline), transmissions with
highest priority w are chosen for scheduling.

C. Reward Design

At each step of learning, the RL agent gathers a reward
which is inversely proportional to the delay incurred by all the
packets that reach their destination in that slot. In addition, a

large negative reward is gathered for each packet that reaches
the destination in that slot, but has missed its deadline. This
reward design minimizes the number of packets missing their
deadlines. Between two schedules that have the same number
of missed packets, the schedule with lower average packet
delay has a better total reward.

D. Building a Scheduling Policy

The RL agent with the above state, action and reward
design is trained over multiple episodes. Each episode starts
with slot 0 of the hyper period and ends at the last slot of
the hyper period. In centralized scheduling protocols such
WirelessHART and TSCH, the network controller has to
build a new schedule whenever the network scenario (the
adjacency matrix, number of nodes, flows and channels
and flow parameters) changes. Dynamic network conditions
because of the wireless links, node mobility and presence
of event-based flows may necessitate frequent changes of
schedules. Also, the schedule needs to be built in as little time
as possible. RL generally suffers from poor convergence time
for training. To overcome this problem, we propose building
an RL policy model offline (e.g., at a server) with final
policy model/s stored at the controller to build schedules by
inference from the model. We consider three (most-intuitive)
schemes to train the agent.

Algorithm 1 Scheme1(ψ)
Input: Number of nodes N , Number of channels M , Network

adjacency graph A, Flow information F for one scenario ψ
Output: Custom Policy model θ for scenario ψ

1: j = 0, t = 0
2: while j < max updates do
3: while k < batch size do
4: Calculate node features (x1tk, x2tk, x3tk, x4tk) for k ∈ [1, N ] and

gt

5: Perform action and calculate reward as per PPO
6: Increment k, t
7: if t=hyper-period of scenario ψ then
8: t = 0
9: end if

10: end while
11: Update policy θ as per PPO
12: Increment j
13: end while

• Scheme 1: The agent is trained with the same network
scenario in each episode, using the raw node features
(x1tk, x2tk, x3tk, x4tk) and the aggregated graph feature
gt as the input at each step (Algorithm 1). At the end
of training, a policy model is built for scheduling this
network scenario. If Ψ is the set of frequently seen
topologies by the network controller, it stores a separate
model for each scenario in Ψ.

• Scheme 2: The agent is trained with a random net-
work scenario from set Ψ (most frequently seen sce-
narios) in each episode, using raw node features
(x1tk, x2tk, x3tk, x4tk) and aggregated graph feature gt as
input at each step (Algorithm 2). At the end of training,
a single, generalized model is built for the entire set



Algorithm 2 Scheme2(Ψ)
Input: Number of nodes N , Number of channels M , Network

adjacency graph A and Flow information F for each scenario in Ψ
Output: Generalized Policy model θ for the set Ψ

1: j = 0, t = 0
2: Choose random scenario ψ from Ψ
3: while j < max updates do
4: while k < batch size do
5: Calculate node features (x1tk, x2tk, x3tk, x4tk) for k ∈ [1, N ] and

gt

6: Perform action and calculate reward as per PPO
7: Increment k, t
8: if t=hyper-period of scenario ψ then
9: t = 0

10: Choose a random scenario ψ from Ψ
11: end if
12: end while
13: Update policy θ as per PPO
14: Increment j
15: end while

of topologies in Ψ. In case the controller frequently
sees scenarios not in the training set resulting in poor
scheduling performance, the information about this new
set of scenarios is sent to the server, which retrains the
RL agent with the new set of frequently seen topologies.

• Scheme 3: The agent is trained with a random network
scenario from set Ψ in each episode, using a 2 dimen-
sional node embedding (ne1tk, ne2

t
k) and the aggregated

graph embedding get built from the raw node features
as input (Algorithm 3). The embeddings are built using
graph representation learning (GraphSage [17]). At the
end of training, a single, generalized model is built as
in Scheme 2 and the model is rebuilt periodically if
necessary.

The average time taken to find the schedule using each of
these schemes, the optimal scheduling policy and a baseline
heuristic (DM) is given in Figure 1. The graph is in log
scale for the time (in milliseconds) taken for each of these
scheduling strategies. Only one baseline heuristic is shown
as there is not much difference in the time taken by different
baseline heuristics. The optimal policy is shown only for a
10 node network, as the time taken increases exponentially
with the number of nodes, flows or channels. As seen among
Schemes 1, 2 and 3, Scheme 3 takes much more time for
building a schedule by inference from the model (and also for
building the model) compared to Schemes 1 and 2, without
much improvement in the scheduling goal achievement. Since
the schedule in most networks with time constraints needs to
be built very quickly, the time taken to build a schedule needs
to be as small as possible. Though the time taken by Schemes
1 and 2 is more than that taken by the baseline heuristic, it
does not increase exponentially with the number of nodes
and gives much better results than the baseline heuristics.
Hence, we consider the choice between Schemes 1 and 2 in
the discussion below.

We compare these two schemes in terms of their memory
requirement at the network controller, efficiency in meeting
the scheduling goal, training cost and efficiency in meeting

Algorithm 3 Scheme3(Ψ)
Input: Number of nodes N , Number of channels M , Network

adjacency graph A and Flow information F for each scenario in Ψ
Output: Generalized Policy model θ for the set Ψ

1: j = 0, t = 0
2: Choose random scenario ψ from Ψ
3: while j < max updates do
4: while k < batch size do
5: Calculate node features (x1tk, x2tk, x3tk, x4tk) for k ∈ [1, N ]
6: Calculate node embeddings ne1tk, ne2

t
k for k ∈ [1, N ] and

aggregated graph embedding get
7: With embeddings as the state, perform action and calculate reward

as per PPO
8: Increment k, t
9: if t=hyper-period of scenario ψ then

10: t = 0
11: Choose a random scenario ψ from Ψ
12: end if
13: end while
14: Update policy θ as per PPO
15: Increment j
16: end while

Fig. 1. Time taken for building a schedule (excluding training)

the scheduling goal for topologies not considered for training.
• Memory requirement at the network controller: For

Scheme 1, if B bytes is the memory required to store a
policy model and the network controller needs to store
|Ψ| models, one for each network scenario it sees, B|Ψ|
bytes of memory are required. For Scheme 2, since a
single model is used for scenarios in Ψ, the memory
required is B bytes. Clearly, Scheme 2 is better for
memory constrained network controllers.

• Efficiency in meeting the scheduling goal: Figure 2
compares the performance of Schemes 1 and 2 with
that of the best baseline heuristic in terms of the average
packet delay, for twenty different network scenarios. It
can be seen that both Schemes 1 and 2 have a delay less
than or equal to that of the best heuristic in all cases.
This shows that the RL agent can learn a scheduling
policy that is better than or at least as good as the best
heuristic. Further, it can be seen that Scheme 1 has a
delay that is lower than or equal to the delay by Scheme
2 in all cases. Thus, Scheme 1 is better than Scheme 2
in terms of meeting the scheduling goal.

• Training cost: Scheme 1 builds |Ψ| models while
Scheme 2 builds a single model. However, building a
general model requires more episodes of training than



Fig. 2. Efficiency in meeting the scheduling goal (20 nodes, 6 flows)

building a custom model for one scenario. In any case,
since RLSchedule performs offline training (possibly at
a server), we do not consider training cost to be the
deciding factor between Schemes 1 and 2.

• Efficiency in meeting the scheduling goal for topologies
not considered for training: When the network controller
has to build a schedule for a network scenario that is not
in Ψ, Scheme 2 is better as it has a generalized model.
Scheme 1, which has a custom model for each scenario
in Ψ, may not be able build a good schedule for such
unseen scenarios.

Based on the above discussion, Scheme 1 is the best when
the network controller is not memory-constrained and does
not encounter new network scenarios frequently. Since we
consider IoT applications, the network controllers generally
do not have a lot of memory. Also, node mobility, changing
channel conditions and event-based flows result in a variety
of network scenarios. Hence, for the rest of this paper, we
focus on Scheme 2 (RLSchedule).

E. RLSchedule in practice

Since the resources (time and computing power) taken
for learning the policy may not be available at the network
controller in real networks, RLSchedule uses an offline
learning scheme. As per this scheme, the network controller
gathers the information about the Ψ most frequently seen
network scenarios and sends this information to a server. The
server runs the RL training module and sends the resulting
scheduling policy to the network controller. The scheduler
uses this policy to find schedules for any scenario it sees.

It may be possible that the controller sees topologies that
have not been included in the training set Ψ. If the current
policy gives poor results for such unseen topologies, the
network controller sends them to the server and they are
added to the training set. This periodic refining of the model
based on the most frequently seen topologies helps improve
the scheduling performance.

V. SIMULATION SETUP AND RESULTS

In this section, we discuss the network scenario generation
and present the results of simulation.

A. Network Scenario Generation

Network scenarios were generated each with N nodes
(spread randomly in a 100mx100m area) and f flows, starting
and ending at random nodes. Links between the nodes were
generated with random packet loss probabilities. The route
for each flow was determined using Dijkstra’s shortest path
algorithm. The route with the minimum cumulative packet
loss probability is considered the best. The period p of
each flow is harmonic [18] and was generated randomly
between 2ρmin and 2ρmax with the deadline being p ∗ α,
where α ∈ (0, 1] is the ratio between the deadline and the
period of a flow. Based on the discussion in Section IV-D,
we consider a generalized model (Scheme 2) for a set of
Ψ (=250) most frequent scenarios for each set of results
while presenting the results of RLSchedule. The results are
presented for this entire set of scenarios. We consider five
different sets of scenarios with different parameters shown
in Table II.

TABLE II
SCENARIOS CONSIDERED FOR SIMULATION

Scenario N M |F| ρmin ρmax α
set no.

1 10 2 4 4 4 0.75
2 10 1 4 4 4 0.75
3 20 2 6 5 5 0.75
4 50 8 15 5 6 0.5
5 20 2 6 4 4 0.75

Fig. 3. Percent of cases in which an optimal schedule is found (10 nodes,
4 flows, 2 channels, Scenario set no.1)

For evaluating the baseline heuristics and the optimal
policy, we use a custom simulator built by us, while for im-
plementing RLSchedule we use OpenAI’s gym toolkit [19],
building on the PPO implementation in PyTorch provided
by [20], using the same packet-level abstraction for both.
The RL agent was trained for 300000 to 500000 episodes
in each case, with an entropy loss coefficient of 0.025 to
ensure sufficient exploration. The models generated occupy
a maximum space of 3MB each.

B. Comparision with the Optimal Policy

We first consider network scenarios with 10 nodes, 4 flows
and two channels. The period of the flows is taken to be 16



Fig. 4. CDF of Avg. Packet Delay (10 nodes, 4 flows, 2 channels,
Scenario set no.1)

Fig. 5. CDF of Packet Delay for Missed Packets (10 nodes, 4 flows,
2 channels, Scenario set no.1)

slots (ρmin = ρmax = 4) and the deadline to period ratio
α = 0.75. For these simple network scenarios, we compare:
• the optimal scheduling policy discussed in III-A,
• the five baseline policies discussed in Section IV-B,
• the Conflict Free Least Laxity First (CFLLF) policy

proposed in [3],
• RLSchedule and
• a random policy where one of the six actions discussed

in Section IV-B is taken at random at each time step.
Figure 3 depicts the percent of scenarios in which a

heuristic finds an optimal schedule for the eight strate-
gies (excluding optimal) listed above. It can be seen that
RLSchedule finds the optimal schedule in a much larger
number of scenarios (≈56% of total scenarios considered),
while taking much less time (Figure 2) compared to the
optimal strategy. It also finds better schedules than all other
baseline heuristics in 39% of the scenarios considered. Thus,
when trained properly, RLSchedule can perform better than
or equal to the best baseline heuristic.

Figure 4 gives the CDF of packet delays for these nine
scheduling policies. It can be seen that RLSchedule results in
lower average packet delay than the other heuristics. Figure 5
shows the CDF of the number of timeslots by which packets
miss their deadline. While the optimal policy can find a
feasible schedule (i.e., no missed packets) for this small
network size for all the topologies considered, the rest of
the policies result in a few missed packets across the 250
scenarios considered. It can be seen that RLSchedule has the
least percent of missed packets among the policies compared,

except for the optimal policy.

C. Effect of number of channels

Next, we consider network scenarios with above-
mentioned parameters, but with a single channel. Since the
optimal policy finds a schedule only if it is feasible and most
of the scenarios in this set are not, we do not plot the results
of the optimal policy. As is expected, this set of scenarios has
greater average packet delay and percent of packets missing
the deadline for all scheduling policies. Figure 6 shows the
CDF of the average packet delay and Figure 7 shows the
CDF of time slots by which the deadline is missed. It can
be seen that the average packet delay of RLSchedule is
greater than some of the baseline heuristics, but it performs
better in terms of packets missing the deadline. This is
because missing a packet is penalized more than increased
delay in the reward design in alignment with the goal of
scheduling. RLSchedule finds those schedules where fewer
number of packets miss their deadlines and by fewer slots,
though packets with more delay budget have larger delays
contributing to higher overall delay.

Fig. 6. CDF of Avg. Packet Delay (10 nodes, 4 flows, 1 channel,
Scenario set no.2)

Fig. 7. CDF of Packet Delay for Missed Packets (10 nodes, 4 flows,
1 channel, Scenario set no.2)

D. Effect of network size

Figures 8 and 9 show the results for a set of network sce-
narios with N=20, F=6, M=2, ρmin = ρmax = 5,α = 0.75.
Again, RLSchedule performs better than all other strategies.
The optimal scheduling policy takes a very long time and
hence is not considered for this set of scenarios. It can be seen
that the number of packets missing the deadline decreases



Fig. 8. CDF of Packet Delay (20 nodes, 6 flows, 2 channels, Scenario
set no.3)

Fig. 9. CDF of Packet Delay for Missed Packets (20 nodes, 6 flows,
2 channels, Scenario set no.3)

compared to 10 node, 4 flow networks (Figure 5) with the
rest of the parameters being the same, due to less scheduling
conflicts. Figures 10 and 11 depict the packet delay CDF
and the CDF of deadline missed by missed packets for a
larger network with more number of flows (N=50, F=15,
M=8, ρmin = 5, ρmax = 6,α = 0.5). It can again be seen
that though the average packet delay is slightly worse than
the best baseline heuristic with RLSchedule, the performance
in terms of missed packets is much better.

E. Effect of stricter deadlines

To study the effect of smaller deadlines on the schedules
built, we consider scenarios with 20 nodes and all other
parameters the same as those in SectionV-D, except for
the time periods and hence, the deadlines. The results are
presented in Figures 12 and 13 for such scenarios (N=20,
F=6, M=2, ρmin = ρmax = 4,α = 0.75). Compared to
Figure 9, the number of packets missing their deadlines is
more because of smaller deadlines, even though the rest
of the parameters are the same. For this set, RLSchedule
performs much better than all other schemes both in terms
of the average packet delay and the deadline criterion, with
the percentage improvement being much greater than that for
more lenient deadlines.

F. Schedulability

While the CDF of packet deadline overshoot gives one
way of comparing the scheduling strategies, a more tradi-
tional approach is to check the schedulability (percentage of

Fig. 10. CDF of Packet Delay (50 nodes, 15 flows, 8 channels,
Scenario set no.4)

Fig. 11. CDF of Packet Delay for Missed Packets (50 nodes, 15 flows,
8 channels, Scenario set no.4)

total scenarios in which a feasible schedule can be found).
Figure 14 shows the schedulability for each set of scenarios
considered. The schedulability of the optimal strategy is
shown only for a small network as it takes exponentially large
time for bigger networks. It can be seen that RLSchedule
results in a schedulability that is equal to or better than the
best baseline heuristic for all types of scenarios.

The following are the main conclusions from the results:

• In case all the network scenarios in set Ψ have feasible
schedules, RLSchedule results in packet delay CDF that
is better than all baseline heuristics.

• In case some of the scenarios in Ψ do not have feasible
schedules, RLSchedule has lower number (by up to
60%) of packets missing the deadline and the deadline
is missed by fewer number of slots, though the CDF
of packet delay may be slightly more than the best (in
terms of average delay) baseline heuristic.

• This improvement can be seen for network scenarios
of different sizes (nodes and flows), channels and time
period (and deadline) ranges.

• Schedulability with RLSchedule is equal to or better
than that of the best baseline heuristic in all cases.

VI. CONCLUSIONS

In this paper, we explored the efficacy of reinforcement
learning (RL) for finding TDMA schedules in networks with
strict time constraints. We identified a set of features of the
packet queues that help in making the scheduling decision.



Fig. 12. CDF of Packet Delay with Stricter Deadlines (20 nodes, 6
flows, 2 channels, Scenario set no.5)

Fig. 13. CDF of Packet Delay for Missed Packets with Stricter
Deadlines (20 nodes, 6 flows, 2 channels, Scenario set no.5)

Fig. 14. Schedulability for different sets of scenarios

We then proposed and studied three different schemes of RL-
based scheduling with custom or generalized models, with
or without node embedding. Of these, the second scheme is
most suited for networks where the scheduling decision has
to be made quickly and changing network scenarios are seen
frequently. We evaluated this scheme for different network
sizes, channels and deadline requirements. Simulation results
show that RLSchedule can result in better average packet
delay than the best baseline heuristic in case a set of scenarios
with feasible schedules. In case it is not possible to find a
feasible schedule, RLSchedule reduces the number of packets
missing the deadline and the number of slots by which
the deadline is missed, even compared to the best baseline
heuristic. In the future, we plan to explore the feasibility of

joint route and scheduling optimization using RL.
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