
Mining User Interests from Social Media

ABSTRACT
The abundance of user generated content on social media provides
the opportunity to build models that are able to accurately and ef-
fectively extract, mine and predict users’ interests with the hopes of
enabling more effective user engagement, better quality delivery of
appropriate services and higher user satisfaction. While traditional
methods for building user profiles relied on AI-based preference
elicitation techniques that could have been considered to be intru-
sive and undesirable by the users, more recent advances are focused
on a non-intrusive yet accurate way of determining users’ inter-
ests and preferences. In this tutorial, we will cover five important
aspects related to the effective mining of user interests: we will
introduce (1) the information sources that are used for extracting
user interests, (2) the variety of types of user interest profiles that
have been proposed in the literature, (3) techniques that have been
adopted or proposed for mining user interests, (4) the scalability and
resource requirements of the state of the art methods and, finally (5)
the evaluation methodologies that are adopted in the literature for
validating the appropriateness of the mined user interest profiles.
We will also introduce existing challenges, open research questions
and exciting opportunities for further work.

1 MOTIVATION AND OVERVIEW
Mining user interests from user behavioral data is critical for appli-
cations such as online advertising. Based on user interests, service
providers such as advertisers, can significantly reduce service deliv-
ery costs by offering the most relevant products (e.g., ads) to their
customers. The challenge of accurately and efficiently identifying
user interests has been the subject of increasing attention in the past
several years. Early approaches were based on explicit input from
individuals about their own interests. To avoid the extra burden of
manually filling in and maintaining interest profiles, most methods
in the past two decades have focused on the development of tech-
niques that can automatically and unobtrusively determine users’
interests based on user behavioral data from data sources such as
browsing history, page visits, the links they click on, the searches
they perform and the topics they interact with [6, 7, 20, 22, 28].

With the emergence and growing popularity of social media such
as blogging systems, wikis, social bookmarking, and microblog-
ging services, many users are extensively engaged in at least some
of these applications to express their feelings and views about a
wide variety of social events/topics as they happen in real time
by commenting, tagging, joining, sharing, liking, and publishing
posts [1, 10, 29]. This has made social media an exciting and unique
source of information about users’ interests. For instance, when
looking at Twitter data during the first week of March 2019, the
rivalry between the two English Premier League soccer clubs, Tot-
tenham Hotspur and Arsenal, is a topic that has attracted a lot of
discussion and interest. The development of techniques that can
automatically detect such topics and model users’ interests towards
them from online social media would be highly important and have
the potential to improve the quality of applications that work on a

user modeling basis, such as filtering Twitter streams [26], news
recommendation [1] and retweet prediction [18], among others.

In this tutorial, we comprehensively introduce different strate-
gies proposed in the literature, including our own work [4, 17, 36–
39, 43, 44, 50, 51, 53–56], for mining user interests from social media
with respect to the following five perspectives:

(1) Information Sources: The type of information sources used for
extracting user interests from within social media such as tex-
tual content (comments, #tags), social network structure, and
images [4, 12, 29, 45, 47]. Additionally, we will review external
background knowledge sources such as semantic web resources
and knowledge graphs that have been incorporated by some re-
searchers to enhance the accuracy of user profiles [8, 25, 31, 51].

(2) Profile Types: Most of works in user interest mining from social
media extract users’ explicit interests that are directly observable
from user content [2, 13, 30, 31, 48, 53]. However, given the in-
creasingly noticeable free-rider, some other techniques focus on
passive users and extract their implicit interests by considering
the interaction patterns between users and topics [38, 45, 46, 50].
There is another line of work that is dedicated to predicting
users’ future interests instead of modeling current or past inter-
ests of users [5, 11, 24, 52]. These works are primarily focused on
predicting if and which users would be interested in future top-
ics on social media. The accurate identification of users’ future
interests on social media allows one to perform future planning
by studying how users will react if certain topics emerge in the
future.

(3) Underlying Techniques: Previous methods have employed dif-
ferent techniques to build user profiles including neural em-
beddings [16, 21, 24], collaborative filtering [3, 5, 14, 23, 33],
topic modeling [23, 48, 55], link prediction [9, 32, 50, 55], regres-
sion [4, 19, 49], graph-based methods [15, 27, 41, 45, 53] and
Semantic Web technologies [17, 25, 31, 35, 52]. We will review
the techniques that have been used for identifying user interests
and their different architectural variations.

(4) Scalability and Resource Requirements: Scalability is fundamental
to user interest mining in order to accommodate torrents of social
content. To this end, we provide a comprehensive overview of
the speed-accuracy (efficiency-accuracy) trade-off when building
user interest profiles for existing techniques of the literature [42].
In particular, we present a critical review of those which scale to
online vs. offline for massive streaming social content.

(5) Evaluation Methodology: Intrinsic vs. extrinsic evaluations are
twomain evaluation techniques, which have beenwidely adopted
in the literature. Intrinsic evaluation helps to assess the qual-
ity of the constructed user interest profiles based on user stud-
ies [8, 25, 34] while extrinsic evaluations measure the quality of
the user interest profiles by looking at its impact on the effective-
ness of other applications such as news recommendation and
retweet prediction [1, 45, 53, 55]. We will review how each of
these evaluation methodologies has been used in the literature.



2 TARGET AUDIENCE AND PREREQUISITES
The target audience for this tutorial will be those who have familiar-
ity with social media mining and basics of data mining techniques.
Where appropriate the tutorial will not make any assumptions
about the audience’s knowledge on more advanced techniques
such as link prediction, matrix factorization, deep matching, en-
tity linking and knowledge-graph based reasoning, among others.
As such, sufficient details will be provided as appropriate so that
the content will be accessible and understandable to those who
have fundamental understanding of data mining principals. The
tutorial will only assume familiarity with topics included in an
undergraduate data mining course.
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6 TUTORIAL OUTLINE
This tutorial presents a comprehensive survey of user interest min-
ing from online social media. In particular, this tutorial covers the
following sections:

Session A [30 Minutes]: Background and Introduction to
Theory of User Interest Mining The tutorial begins with a ses-
sion about basics of user interest mining and various online social
media. This includes preliminaries, motivations, and highlights on
research questions to which user interest mining from online social
media would provide an answer for. Then, we introduce different
third-party applications that can take advantage of user interest
mining from social network to improve the accuracy of their re-
sults. Finally, we review topics that will be covered in the tutorial
followed by a disclaimer, i.e., what the tutorial is not about.

Session B [120Minutes]: Techniques andMethods in User
Interest Mining from Social Media Depending on the desirable
type of user interest profiles, i.e., explicit or implicit or future user in-
terest profiles, previous work have adopted different approaches for
addressing the problem. Within these three categories, we lay out
the details and provide a comparative analysis of existing methods
in terms of their representation power, flexibility, resource needs
and scalability. Specifically, in this session, we elaborate on how
previous studies have used different techniques such as collabora-
tive filtering [3, 5, 14, 23, 33], topic modeling [23, 40, 48, 55? ], link
prediction [9, 32, 50, 55], graph-based methods [15, 27, 41, 45, 53]
and Semantic Web technologies [17, 25, 31, 35, 52] to construct a
given type of interest profile for users (e.g. implicit interest profile).

SessionC [30Minutes]: EvaluationMethodologies, Future
Directions and Open Challenges In this session, we first elabo-
rate on different resources and two main approaches used in the
literature to evaluate user interest profiles, namely intrinsic vs
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extrinsic evaluation techniques. Next, this session will present ex-
citing open research questions in the state-of-the-art for mining
users’ interests from online social media. Accurate information
extraction from online social media poses unique challenges due
to the special characteristics of them. Social posts are rather short,
noisy and informal and they often do not provide sufficient contex-
tual information for identifying their semantics. In other words, the
semantics of the context of the communicated information within
a post is often implicit. Moreover, as a large majority of social net-
work users are free-riders and cold start users, the interests of such
users is challenging and they cannot be directly identified from
their explicit contributions to the online social network. This tuto-
rial presents the open issues that are important but have not been
well addressed in recent studies which can inspire future directions
in this research field. We will cover potential resources (e.g., Linked
Open Data) and techniques (e.g. Learning-to-Rank, deep learning
architectures and causal inference) that can be relevant for mining
user interests.

7 RELEVANCE TO ARTIFICIAL
INTELLIGENCE COMMUNITY AND A LIST
OF RELATED TUTORIALS

The identification of user interests from social media has tradition-
ally been of interest to the data mining community for at least three
main reasons:

(1) Mining user interests targets the systematic extraction of in-
formation about users based on the behavioral signals, social
network relations and users’ content. The techniques that are
used for this purpose are those that have been widely adopted
and used in many aspects of data mining such as learning to
rank, link prediction, graph mining, knowledge graphs, causal
and predictive models, just to name a few.

(2) The accurate and complete detection of user interests finds rele-
vance and importance in downstream data mining applications
that rely on such information for decision making. For instance,
effective recommendation requires sufficient context from the
user who will be receiving the recommendations. Such context
can be derived from users’ interests that are mined from users’
behavioral and interest profile.

(3) While traditional forms of user interest mining relied on tech-
niques such as preference elicitation that could have been consid-
ered to be intrusive in many application areas, current methods
for mining user interest profiles are based on mining publicly
available online content. This provides an exciting opportunity
to build large-scale, non-intrusive, scalable and efficient methods
with large amounts of public data. As we will discuss in this
tutorial, there are both intrinsic and extrinsic ways to effectively
evaluate and benchmark the techniques in this area, which allow
for reproducible and incremental studies.

It is important to note that while there has been similar syner-
gistic tutorials on similar topics to this in other venues, the topic
proposed in this tutorial distinguishes itself by focusing on ways to
extract, mine and predict "user" level interest information. The fol-
lowing tutorials can be considered complementary and synergistic
to the theme of our proposed tutorial:

(1) User Group Analytics: Discovery, Exploration and Visualization
by Behrooz Omidvar-Tehrani and Sihem Amer-Yahia at CIKM
2018. This tutorial focuses on group level analytics while ours
is focused on the user itself.

(2) FromDesign to Analysis: Conducting Controlled Laboratory Exper-
iments with Users by Diane Kelly and Anita Crescenzi at SIGIR
2017. This tutorial is especially relevant to how experiments are
designed for evaluating user interest mining techniques.

(3) Knowledge Extraction and Inference fromText by SoumenChakrabarti
at SIGIR 2018 (also CIKM 2017). Similar to the theme of our tu-
torial, this tutorial focused on extracting actionable knowledge
from text. Our tutorial will go beyond text and cover other
information types such as social relations and temporal charac-
teristics.

(4) Network Science of Teams: Characterization, Prediction, and Opti-
mization by Liangyue Li and Hanghang Tong at WSDM 2018.
Similar to User Group Analytics tutorial presented above, this
tutorial focuses on team level dynamics whereas our tutorial
will be focused on user-level analytics and hence are comple-
mentary.

(5) Behavior Analytics: Methods and Applica by Longbing Cao, Philip
S Yu and Guansong Pang at KDD 2018. This tutorial focuses on
behavior analytics of customers at group level analytics while
our tutorial is focused on the user itself.

(6) Social Media Analytics: Tracking, Modeling and Predicting the
Flow of Information through Networks by Jure Leskovec at KDD
2011. This tutorial focused on user interactions in social media
to track the flow of relevant information and predict missing
links. Our tutorial utilizes both user content and interactions to
more specifically extract users’ interests from social media.

There are many other similar tutorials presented at major venues
similar to the above. We aim to provide a complementary view of
analytics at the user-level, while past tutorials focused on other
aspects such as group or team-level analytics.
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