Ontology-based Optimization Modelling Tool for
distributed and ad-hoc business problems

PIAO GUANGYUAN

The Graduate School

Yonsei University
Industrial and Information Engineering

Ontology-based Optimization Modelling Tool for
distributed and ad-hoc business problems

A Master’s Thesis
Submitted to the Department of Industrial and Information Engineering
and the Graduate School of Yonsei University
in partial fulfillment of the
requirements for the degree of

Master of Industrial and Information Engineering

PIAO GUANGYUAN

December 2011

This certifies that the master’s thesis
of PIAO GUANGYUAN is approved.

Thesis Supervisor: Wooju Kim

Chang Ouk Kim

June Seok Hong

The Graduate School
Yonsei University
December 2011

Table of Contents

INEFOAUCTION ... e 1
1.1 Background of the RESEArCh...........cccveiiiiiiiiiii e 1
1.2 Objective and Scopes of the ReSearchccccoeiiiiiiii e 2
REIATEA WOTKS ... 5
2.1 .SemMANtiC WED ... 5
2.2 OWL 2.0 ...ttt ettt e et r e nnee s 5}
2.3 OWL AP ettt e et 6
2.4 SWRL aNd SWRLTADvviiiiiieeeiiee et 7
2.5 SWCL... e 8
SWCL COMPIBMENT.....ooiiiiiiiiiie e 9
3.1 MaNCNESTEr SYNTAXeeiiiiiiieiiiiee ettt reee s 11
Ontology-based Optimization Modelling Tool using SWCL.........cc....cou.... 12
4.1 Architecture of Ontology-based Optimization Modelling Tool................... 12
4.2 ConStraint EITOr.......coiiiiiiiiiciiee e 13
4.3 Optimization Model CONSIIUCONooiuiiiiiiieiiie e 15
4.4 Optimization Modelling Language Translator..........ccccocoeeviiieiiiiniiieesiiennn 18

Applying Ontology-based Optimization Modelling Tool to Virtual Enterprise...21

5.1 Virtual Enterprise problem ..o 21
5.2 Constraint sharing among VENAOIS.cciueeiiiiiiiiiee e siieesiee e e seeee e 22
5.3 Virtual Enterprise Ontology Modelling.........ccoooveiiiiiiiiiiiiiie e 24
5.4 Optimization Modelling with Optimization Modelling Toolccceeieee. 25
5.5 Translated Optimization Model in OPL modelling language.............ccceeueee. 26

6. CONCIUSION ..ot

6.1 Summary Of CONLIIDULIONSccvviiiiiieiiiie e 30
RETEIENCES ... 32
ADSEFACT ... 33
Acknowledgement (iN KOFBAN)iun it e eeeaee e 35

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

10.

11.

12.

13.

14.

15.

16.

1

\l

18

List of Figures

Virtual Enterprise SCENAri0ceoeeuieisiieieie e 4

. Architecture of the Semantic Webccociiiiiiiiii 6
Abstract syntax 0f SWCL ... 8
Country and province classes and the relationshipcc.ooooee 10
Class expression for variable x in SWCL ..o, 11
The Manchester OWL Syntax OWL 1.0 Class Constructors 11
The architecture of ontology-based optimization modelling tool 13
Frame for adding constraint in constraint editorc...... 14
Frame for define the objective of optimization model 15
A general procedure for constraints identification 16
Objective translation procedure from SWCL to OPLcceeeivvinnnnn 19
Part of constraint translation procedure from SWCL to OPL 20
Supply Chain for Virtual ENterpriseccoovviiiiiiiiiiiee e e, 22
Schema level of Ontology for Virtual Enterpriseccoooveieiiinin, 24
Translated Optimization Model in OPL modelling language...............26
Optimized solution from IBM llog Cplex Optimization Studio 27
Supply Chain for Virtual Enterprise with additional memory vendor 28
Comparison with the previous researchcoeoeeeviiniiieiiiinineennns 30

ABSTRACT

Ontology-based Optimization Modelling Tool using SWCL

Semantic Web Constraint Language (SWCL) was proposed in 2006 with the
vision of enhancing the quality of humans’ decision-making by machines in Semantic
Web environments, complementing the missing but important part which acknowledges
constraints on concepts represented by ontology. Even though, the XML syntax for
SWCL itself is too verbose and has a downside that needs to be generated by hand with
deep knowledge of OWL. In this respect, users have to be aware of the syntax and
semantics of OWL in deep in order to generate a problem description in SWCL by hand
without any error. Moreover, due to the complexity of SWCL, it would be tedious work
to generate all constraints with SWCL in many cases. These reasons causes decrease of
the efficiency and popularity for SWCL.

In order to cope with these issues, we developed ontology-based optimization
modelling tool using SWCL which can help users to manipulate the problem model in
SWCL straightforward and make the optimization model intuitive as well. Through our
research and development, we supplement the method to represent the class description
for each variable in SWCL with Manchester syntax which is developed in response to a
demand from a wide range of users, who do not have the background knowledge for
Description Logic (DL). We developed and implemented the variable detection
algorithm and the related constraints extraction algorithm to construct the optimization
model selecting the constraints in SWCL that are distributed and shared in the Semantic

Web environments. In addition, the translation algorithm and tool that could be able to

Vi

convert the problem model in SWCL to problem description in OPL modelling
language.

The developed tool was applied to a production scheduling problem for virtual
enterprise to validate the usability of our methodology. This research shows that various
problems with different objective and constraints could be manipulated to construct the

optimization model by the ontology-based optimization modelling tool.

Keywords: Semantic Web, Semantic Web Constraint Language, Optimization Modelling

vii

1. Introduction

1.1 Background of the Research

Since Semantic Web has been introduced, the Semantic Web society has
developed a set of basic foundational frameworks to share knowledge among machines.
As Tim Berners-Lee depicted in the Semantic Web Stack [1] and its ontology layers,
based on RDF, RDF Schema, and OWL, has been almost stabilized. The technologies
from the bottom of the stack up to OWL [2] as well as the new version OWL2.0 [3] are
currently standardized and accepted to build Semantic Web applications. It is still not
clear, however, how the top of the stack is going to be implemented. All layers of the
stack need to be implemented to achieve full visions of the Semantic Web. A logic and
rule layer was supposed to be a way to extend it. One of the choices for this logic layer
was a Semantic Web Rule Language (SWRL), which was submitted as a
recommendation to W3C in 2004. SWRL was designed to extend representational
power of OWL by combining Horn-like rules with OWL. In addition, the activities of
W3C members’ submission like Semantic Web Service Language (SWSL) [4] and Web
Rule Language (WRL) [5] show that the expressive power of Semantic Web is not
confined only by data, but also richer knowledge such as rules to be expressive,
sharable and reusable across the Web environment. In this respect, constraint as a
neglected piece, which would be able to improve the representational power
significantly, is in need to be extended or involved in Semantic Web environment. The
first formal approach proposed to deal with constraints in OWL it was known as
Constraint Interchange Format/Semantic Web Rule Language (CIF/SWRL) [6]. Its

theoretical foundation, based on First Order Logic (FOL), includes constraints that

conform to logic only, which are not appropriate for handling arithmetic constraints
(other important components of constraints) point out that processing arithmetic
constraints is essential if we want to deal with decision making in classical optimization
problems in the Semantic Web environment because these optimization problems are
usually expressed with arithmetic constraints. Furthermore, they described the necessity
of exchanging arithmetic constraints over the Web while handling optimization
problems with goals. In order to complement existing methods by extending them over
their limitations and handling mathematical optimization problems in the Semantic Web
environment, the Semantic Web Constraint Language has been proposed by [7] which
are compatible with OWL. In this research, they also showed how the SWCL could
represent problem of internet shopper in the real world and solve the problem with an
intelligent agent that understands information represented by semantic technologies like
OWL, SWRL and SWCL. This approach showed the potential of SWCL and the ability
to enhance the expressive power of Semantic Web impressively. In addition, sharing
interchanging constraints information among each other in the virtual enterprise with
SWCL was proposed by [8]. Although in these researches they were using SWCL in a
meaningful way, because of the SWCL itself it was needed to be generated by hand, it
requires extremely deep understanding about OWL in order to make sure the SWCL
correct without any error, in some cases, it would also be a tedious work to generating a
lot of constraints exist. Furthermore, generate SWCL manually makes the reference of

OWL resources like OWL classes and properties very difficult.

1.2 Objective and Scopes of the Research

The primary goal of the work is to propose an effective way to manipulate
SWCL with an ontology-based optimization modelling tool as Protégé plug-in to

2

facilitate the SWCL generation process straightforward and provide CRUD functions
additionally with referencing OWL classes and properties in Protégé more intuitively.
On top of that, we are going to develop conversion algorithm that translating the
optimization model described in SWCL to OPL modelling language in order to get the
optimized solution from IBM llog Cplex Optimization Studio. With constraints and
objective generated by users and the converted optimization model, we can get the
optimized solution from IBM llog Cplex Optimization Studio with ease which can help
decision making or planning for users in specific circumstances like virtual enterprise.
Virtual enterprise is a temporal alliance of companies that shares resources to respond to
business opportunities better. Obtaining an optimal production schedule for a supply
chain of virtual enterprise is usually the most important factor for its success. Assume
that there are three vendors within Semantic Web in the virtual enterprise at first. The
virtual enterprise has one memory vendor; CPU vendor and assembly vendor in order to
produce PC for their users (Suppose that a PC produced by the assembly company is
assembled with only the one CPU and two memories). They are sharing the same
ontology schema and the objective of this virtual enterprise is to minimize the total cost
of the three vendors. With optimization modelling tool we propose in this paper, the
prime company (Assembly Company) could be able to define constraints sharing within
the virtual enterprise and the objective in SWCL too. The optimization model defined in
SWCL will be described in OPL modelling language after conversion algorithm
described in section 4. Then, the virtual enterprise could get the optimized objective
with optimized schedule separately after solving optimization model defined in OPL
modelling language. In addition, when there’s additional memory vendor is going to
join the virtual enterprise which is sharing the same ontology schema (Figure 1), there’s

nothing to change but adding the corresponding instances into the ontology. Then with

optimization modelling tool, the virtual enterprise can get the minimized total cost with
additional memory vendor 2 with ease. Furthermore, it can also help the virtual
enterprise to decide co working with additional memory vendor 2 is a good choice or

not. The scenario will be described in detail in section 5.

m&nl . constramt - hL'U\"aidu_l L -

Semantic Web

constraint

€ GRUNendosm—
e —

Semantic Web

constrant

(’mmdut

Fig 1. Virtual Enterprise Scenario

The account of this work is presented in the following order. Section 2
describes the related works. Section 3 describes the complement of SWCL with
Manchester OWL Syntax. In Section 4, we discuss the ontology-based development of
optimization modelling tool using SWCL in Protégé 4.x series which can efficiently
help the SWCL generation and modification easier and several algorithms adapted in

the tool. Section 5 summarizes the presented work and lists of contributions.

2. Related works

2.1 Semantic Web

The Semantic Web [9], coined by Tim Berners-Lee, is a "man-made woven
web of data" that facilitates machines to understand the semantics, or meaning, of
information on the World Wide Web. In addition to the classic “Web of documents”
W3C is helping to build a technology stack to support a “Web of data,” the sort of data
you find in databases. The ultimate goal of the Web of data is to enable computers to do
more useful work and to develop systems that can support trusted interactions over the
network. The term “Semantic Web” refers to W3C’s vision of the Web of linked data.
Semantic Web technologies enable people to create data stores on the Web, build
vocabularies, and write rules for handling data. In order to archive the goal of the
Semantic Web, components for supporting the Semantic Web are proposed by Berners-
Lee, 2006. Figure 1 shows the up-to-the-minute Semantic Web reference architecture.
There are some technologies such as URI, XML, RDF, OWL, and so forth for sharing

meaning on the Semantic Web.

2.20WL2.0

OWL 2 Web Ontology Language (OWL) is a Semantic Web language designed
to represent rich and complex knowledge about things, groups of things, and relations
between things. OWL is a computational logic-based language that knowledge
expressed in OWL can be reasoned with by computer programs either to verify the
consistency of that knowledge or to make implicit knowledge explicit. OWL documents,

known as ontologies, can be published in the World Wide Web and may refer to or be

referred from other OWL ontologies. OWL is part of the W3C’s Semantic Web
technology stack and OWL 2.0 which adds syntactic sugar to make some common
patterns easier to write, new constructs that increase expressivity, extended datatypes
and capabilities, simple metamodelling capabilities and other innovations and minor

features is the extension of OWL and had been recommended by W3C from 2009.

Userinterface and applications

Trust

Proof

Unifving logic

Ontologies: Rules:
OWL RIF/SWRL

)

,
(=

Querying:
SPARQL

Taxonomies: RDFS

fydeafodin

Data interchange: RDF

Syntax: XML

. _ Character set:
[dentifiers: URI UNICODE

Fig 2. Architecture of the Semantic Web

2.3 OWL API

The OWLAPI [10] is a Java API and reference implementation for creating,
manipulating and serialising OWL ontologies. The latest version of the API is focused

towards OWL 2. In addition, when we face the problem which version of Protégé is the

most popular open-source platform that provides a suite of tools to construct domain
models and knowledge-based applications with ontologies, in view of the Protégé 3.x
series and Protégé 4.x series made by different faculty (the former one is made by
Stanford and the latter one made by Manchester), and Protégé 4.x uses the open source,
Java-based OWL API that is proving popular with many developers around the world,
this makes writing or migrating to and from other systems more straightforward, and a
larger developer community which means more assistance and a more robust codebase.
In addition, the OWL API supports much of the upcoming OWL 2.0 recommendation.
So we decided to use the OWL API and Protégé 4.x series to develop SWCL Editor.
However, for developers that require access to the RDF model at the level of a triple
store, the Protégé-OWL API from Stanford is an option. Moreover, Protégé 4.0 OWL
support is built on top of the OWL API, which provides all of the model manipulation
and querying functionality. On top of this, Protégé supports further functionality for

developer’s convenience - hierarchies, renderer management, search etc.

2.4 SWRL and SWRLTab

Semantic Web Rule Language (SWRL) [11] is a language based on a
combination of the OWL DL and OWL Lite sublanguages of the OWL Web Ontology
Language with the Unary/Binary Datalog RuleML sublanguages of the Rule Markup
Language. The proposal extends the set of OWL axioms to include Horn-like rules. It
thus enables Horn-like rules to be combined with an OWL knowledge base. A high-
level abstract syntax is provided that extends the OWL abstract syntax described in the
OWL Semantics and Abstract Syntax document [12]. An extension of the OWL model-
theoretic semantics is also given to provide a formal meaning for OWL ontologies
including rules written in this abstract syntax. The SWRLTab [13] is a development

7

environment for working with SWRL rules in Protégé-OWL. It supports the editing and
execution of SWRL rules. It provides a set of libraries that can be used in rules,
including libraries to interoperate with XML documents, and spreadsheets, and libraries
with mathematical, string, RDFS, and temporal operators. A SWRL-based OWL query

language called SQWRL is also provided.

2.5 SWCL

As mentioned in section 1, SWCL [7] had been proposed, which combines
constraints with an OWL knowledge base at an abstract level. They also proposed the
abstract syntax of SWCL to facilitate access to constraints and the evaluation of their
expressions in the Semantic Web. The syntax for SWCL extends the abstract syntax of
OWL described in the OWL Semantics and Abstract Syntax document [14] with
additional axioms for constraints used in SWRL [10]. An abstract syntax for SWCL is
specified using a version of the EBNF notation used for XML [14] Terminals are
quoted, whereas non-terminals are bold but not quoted. The abstract syntax of SWCL is

shown in figure 3.

Axiom ::= OptModel

OptModel ::="OptModel (' objective subjectTo")'

objective ::="Objective(' optimizationlnstruction objectiveTerm')'
subjectTo ::='(‘{constraint}')’

optimizationlnstruction ::="Minimize'|' Maximize'

objectiveTerms ::="objectiveTerm('termBlock{termBlock}")’

constraint ::='Constraint('[URIreference] { qualifier } LHS operator RHS
qualifier ::="Qualifier('variablelD | variable')'

8

variable ::="Variable('variablelD description")’

variablelD ::='VariableID('URIreference')’

LHS ::="LHS("termBlock{termBlock}")’

operator ::="equal’|'notEqual’|'lessThan'['lessThanOrEqual’|' greaterThan'|' greater ThanOrEqual’
RHS ::="RHS('termBlock{termBlock}')’

termBlock ::='TermBlock ('sign [aggregateOperator | { parameter} factor {factor})’
sign :="+"|'-'

aggregateOperator ::='Sigma'|' Production’

factor ::="Factor(‘'individuallD datavaluePropertylD')'| Factor('variablelD datavaluedPropertylD")'

parameter ::='Parameter(‘variablelD | variable")’

Fig 3. Abstract syntax of SWCL

Alternatives are either separated by vertical bars (|) or provided in different
productions. Components that occur at most once are enclosed in square brackets ([...]);
those that occur any number of times (including zero) are in braces ({...}). Here, white

space is ignored in the productions.

3. SWCL Complement

In order to explain our approach more explicitly, we use the simple population
example [7]. Suppose that we have sample knowledge about two classes, namely,
“Country” and “Province,” and their relationship, as shown in figure 4. Figure 4 also
shows that each class has two properties, namely, “partOf” and “populationValue.” The
“partOf” property denotes that “Province” is a part of “Country,” whereas

“populationValue” indicates the number of inhabitants in the region. The population of

9

each country should equal the sum of the populations of the provinces belonging to that
country. This natural knowledge can be easily represented by a mathematical constraint
as Formula (1).

Zx. populationValue = y.populationValue, for all y € (Country)® Q)

xey. partOf

Where C denotes a class interpretation function; and a.b stands for the value of
property b of an instance a. As already mentioned, the SWCL is made to combine
constraints with an OWL knowledge base in the Semantic Web. In our optimization
modelling tool, there are some requirements that need users to define the description of
variable in the process of generating SWCL. In this case, if we use SWCL describe the
description of variable directly; the description of variable x will be described like
figure 5, which is also verbose at all. In order to make the description of variable more
straightforward for users, we apply Manchester Syntax within user interface
development which can significantly make the description of variable less verbose and

easier to read and write for users.

populationValue

populationValue

xsd:positivelnteger J

Fig 4. Country and province classes and the relationship

10

<swcl:Variable rdf:id="x">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#partOf"/>
<owl:hasValue rdf:resource="#y"/>
</owl:Restriction>
</rdfs:subClassOf>
</swcl:Variable>

Fig 5. Class expression for variable x in SWCL

3.1 Manchester Syntax

The Manchester Syntax was designed with primary considerations to produce a
syntax that was concise, did not use DL symbols, and was quick and easy to read and
write. These considerations were based on the experience of interaction with users of
Protégé-OWL where the syntax would be primarily used to edit class expressions.
Lessons learnt from the GALEN project [15] were also taken into consideration. For
example, minimising the number of brackets required to write class expressions, and

choosing keywords to promote readability, were taken into account.

OWL Constructor DL Syntax Manchester Syntax
intersectionOf Crt' b CANDD
unionOf cuU D CORD
complementOf C NOT C

oneOf {a}u {b} {ab...}
someValueFrom 3IRC R SOME C
allvValuesFrom VRC RONLY C
minCardinality >NR R MIN 3
maxCardinality <NR R MAX 3
Cardinality =NR R EXACTLY 3
hasValue 3 R{a} R VALUE a

Fig 6. The Manchester OWL Syntax OWL 1.0 Class Constructors

Manchester Syntax makes the class expression more natural to read, uses the

11

natural language keywords, and also makes it easy to paste the plain text representation
of the expression into e-mails etc. without incurring the formatting problems that can
arise due to the different fonts required to represent the mathematical symbols that are
used in the DL syntax. The class descriptions of Manchester Syntax are shown in figure
6. If so, the class expression of variables represented by SWCL Syntax, can be all
replaced by Manchester Syntax. The corresponding class expression in Manchester
Syntax for variable x could be described as “partOf VALUE y”, which is extremely

simple and easier to read and write for the users.

4. Ontology-based Optimization Modelling Tool using SWCL

SWCL is based on the OWL, which means it references OWL classes and
properties within constructing constraints. Take this in account, and complementation
with Manchester Syntax, we developed ontology-based modelling tool which can help
users manipulate SWCL easier and more intuitively. Furthermore, we developed several
algorithms to make the translation process automatically from SWCL to OPL modelling
language in order to get the optimized solution from IBM llog Cplex Optimization

Studio.
4.1 Architecture of Ontology-based Optimization Modelling Tool

The architecture of ontology-based optimization modelling tool is displayed in
figure 7. There are three main components in it which are constraint editor, optimization
model constructor, optimization modelling language translator separately. The first one
is developed for helping users manipulate SWCL with user interface which is applying
Manchester Syntax in SWCL domain description and referencing resources in protégé

intuitively. With the constraints and objective defined from constraint editor,

12

optimization model constructor can automatically identify objective and constraints
related to it. During the process, decision variable identification is done with checking
the factor value exists or not. Optimization model identification can help us to find out
the model we defined is LP, CSP etc. After the optimization model defined in SWCL,
we need to translate it to optimization model described in OPL modelling language in
order to get the solution of the problem we defined. Hence, we developed an algorithm
to make the translation available and can get the optimized resolution of the problem

from IBM llog Cplex Optimization Studio.

Ontology-based Optimization Modeling Tool

Optimization Model Constructor Optimization Modeling
Language Translator

IBM llog Cplex
Optimization Studio

Optimization Model Identification
OWL/ llog
SWCL tatement

Statement
Decision Yariable ldentification

Constraint Editor
Constraint |dentification

User
Interface

1

Objective Identification

Protege 4.1
Protege 4.1 AP
OVY

I
o

Fig 7. The architecture of ontology-based optimization modelling tool

4.2 Constraint Editor

Constraint Editor has been developed the similar user interface as SWRLTab
does in order to provide familiar user experience for users. Users could simply add,
modify and delete the constraints with the Constraint Editor in Protégé. The adding co

nstraint frame is displayed in figure 8. The adding constraint frame is developed based

13

on the SWCL structure. Variable panel is used for declaring the variables which would
be used for expressing constraints. As one might expect, some variables could probably
be used among different constraints. Thus, the variables declared in one frame would be
able to be used in other constraints too. After finishing the constraint, we just need to
click on the “OK’’ button at the bottom of the frame to check the constraint, it will be
displayed at the abstract syntax panel at the bottom of the frame. The added
constraint then will be displayed in SWCL View in the Protégé after clicking the
“Submit” button in the adding constraint frame. As mentioned in section 3, we apply
Manchester Syntax in domain description of variable, which is less verbose, easy
to read and write. Furthermore, the Constraint Editor can reference resources like
OWL classes and properties in the Protégé intuitively with providing options fro

m user interface.

L Cormumphion AND hasCer iVendor VALLE % AND
—) Capacty VALLE Y v

s - Variate | Vst Progesty

e velemand

|

]

e s Consumgtion s

" PP o apacty

[41

Abziract Syreac Wiwisbin(Ty Vershorl,
Wariskie(Tw Vieek),
Waribbe(Ta Conmumplion AND bl VALLE Ty VALLE Tw)
WVariabie(70 Capacty AND hasCons YALLE Pv AND hast VALLE Pwi
Constraint { Cunltier { ¢ Fw)L (Tenmiiock (+ sigea Parameter(7a) Facior n hastonsumptiondmount))) lessThan0r
Expand RHE (TermiBiock (+ Factor | 7 hasProduceCapacity)))

Fig 8. Frame for adding constraint in constraint editor

14

The Objective View displayed in Figure 9 is developed to help users define
their objective simply. Users can use the Objective View to select optimization

instruction and edit objective term blocks to define the objective.

| Constrairt View | Obiective View

Cpimization Instruction:
Minimize -

Objective Term: A =l
sign aggregateOp Parameter | + = || faclor | + ‘
* v .sigma v Wariable Variable Property |
Ed - ol hasConsumptionAmourt
il hasConsumptionCost

-

Canfirm

Fig 9. Frame for define the objective of optimization model

4.3 Optimization Model Constructor

Optimization Model Constructor has four components which are objective
identification, constraints identification, decision variable identification and
optimization model identification. With these four steps, we can get the objective that
user defined, the constraints related to the objective and decision variables as well. In

other words, the optimization model described in SWCL is achieved.

1) Objective Identification.
This step identifies the user’s objective for specific problem after finishing
defines the objective of the problem. As shown in figure 9, the variable used in this step

should be declared in SWCL generation process. Suppose variable i is stand for the

15

“Consumption” class, as one might expect, the user would like to minimize the total

consumption cost.

2) Constraint Identification.

Once the objective is given from previous step, we need to extract constraints
relevant to the objective automatically. In order to do that, firstly, we need to find out all
factors from objective that individuals in the variable of every factor have no value in its

property. Then, “decision variable factors set” is initialized with these found factors.

initialize decision variable factors set empty
initialize relevant factors set empty
initialize identified constraint set empty

for all Objective TermBlocks
for all Factors
if Factor is ““decision variable factor”
set {Factor’s class expression, property} as a pair
add the pair to decision variable factors set
endif
endfor
endfor
repeat
for all Constraints
for all Factors in Constraint
if Factor is exist in decision variables set
add Constraint to identified constraint set
if relevant factors in the Constraint is “decision variable”
set {Factor’s class expression, property} as a pair
add the pair to relevant factors set
endif
endif
endfor
endfor
set decision variable factors set as relevant factors set
set relevant factors set empty
until decision variable factors set is empty

Fig 10. A general procedure for constraints identification

Second, for all constraints, we should identify the constraint if there are some

16

factors in it have the relation to one of decision variable factors”. Having relation in two
factors means that the property is the same, in addition, the class expression (domain
description) of variable should have intersection simultaneously. Aside from this, for all
identified constraints, we have to check out relevant factors. In some cases, the relevant
factors in identified constraints would have some additional “decision variable factors”.
Based on this fact, find all constraints including these kind of relevant factors until there
are no relevant constraints anymore. The process is described as pseudo code in figure

10.

3) Decision Variable Identification

As a significant step involved in constraint identification, identify the decision
variable is relatively straightforward. Take the factor “a.hasConsumptionAmount” as an
example, for all individuals in class expression (domain description) of variable a, we
can check the property value from the ontology. If we can obtain the value as a form of
the literal from the ontology, in that case, we can identify this is constant. On the other
hand, if the value is not available from ontology, it will be identified as decision

variable.

4) Optimization Identification

In the optimization identification step, an agent classifies what kind of
programming model the given problem is (e.g., linear programming problem, integer
programming problem, etc.). For the reason of we only deal with the linear
programming problem in this research, this part will be our future work and won’t be

discussed in this paper.

17

4.4 Optimization Modelling Language Translator

In this section, we will explain how to translate the optimization model
described in OWL/SWCL statement from previous steps. There is no doubt about that
we need a specific solver to solve the problem defined by users. There are many solvers
around the world like Prolog, IBM llog CPlex Optimization Studio etc. In this research,
we simply choose IBM llog Cplex Optimization Studio as solver without any specific
reason. To obtain a solution with IBM Illog Cplex Optimization Studio, the problem
identified with OWL/ SWCL should be translated into OPL modelling language. This
translation task is quite straightforward with the constructs in the relevant constraint set,
the decision variable factor set. For each relevant constraint, the optimization modelling
tool writes the corresponding OPL modelling language and then adds required decision
variables and data declarations. There are two main parts of this translation process, the

objective translation and the constraints translation respectively.

1) Objective Translation

Suppose we have the objective defined by user as following, as one might
expect, for all individuals in class expression of variable a, there will be the same
corresponding numbers of constraints occurred in OPL modelling language. In the mean
time, every value of factor for each individual should obtain from ontology. As
mentioned above, if there’s literal value available, take the value and reflect it in the
OPL modelling language. Otherwise, when the factor is decision variable factor, we
should declare the variable first in OPL modelling language and reflect as “name of
property append name of individual”. For example, one of individual of variable a

named “v1Consumptionll” and the property “hasConsumption” has no value in

18

ontology. Then, we should declare the variable named
“hasConsumptionAmountvlConsumption11” in OPL declaration of variable and reflect

it in expression of constraint.

minimize Z a.hasConsumptionAmount x a.hasConsumptionCost

a

initialize VariableDeclaration String to
initialize ObjectiveTo String to ™"

for all Objective TermBlocks
initialize Objective TermBlock String to
for all individuals in Parameter
for all factors in individual
initialize Factor String to "**
if factor's variable has the value in factor's property
append the value to Factor String
else
declare the variable with property's name appending individual's name
append the variable to Factor String
endif
append Factor String to Objective TermBlock
endfor
endfor
append Objective TermBlock String to ObjectiveTo String
endfor

Fig 11. Objective translation procedure from SWCL to OPL
The overall objective translation procedure from SWCL to OPL modelling language is

briefly described in figure 11.

2) Constraints Translation

The constraints translation process is much the same as objective translation.
In contrast to the objective translation, there are qualifiers in constraints that we have to
take attention. Take a constraint described as following, for example, for both qualifiers

v and w, we can obtain one corresponding constraint in OPL modelling language.
for all v eVendor,w € Week

19

a € Consumption AND hasConsumptionVendor VALUE v AND hasProduceWeek VALUE w

b € Capacity AND hasConsumptionVendor VALUE v AND hasCapacityWeek VALUE w

Za.hasConsumptionAmount < b.hasProduceCapability

for all qualifiers
initialize LHS String to "™
for all LHS TermBlocks
initialize LHS TermBlock String to ™"
if there is no Parameter
for all factors
initialize Factor String to ™"
if factor's variable has the value in factor's property
append the value to Factor String
else
declare the variable with property's name appending individual's
name
append the variable to Factor String
endif
endfor
append Factor String to LHS TermBlock String
else
for all individuals in Parameter
for all factors in individual
initialize Factor String to ™"
if factor's variable has the value in factor's property
append the value to Factor String

else
declare the variable with property's name appending individual's
name
append the variable to Factor String
endif
endfor
endfor
endif
append LHS TermBlock String to LHS String
endfor
endfor

Fig 12. Part of constraint translation procedure from SWCL to OPL

That means, if there are four individuals in class expression of variable v and

20

four individuals in class expression of variable w respectively, we are going to obtain
4*4 =16 corresponding constraints in OPL modelling language. At each loop, we can
easily get the individuals in class expression of variable a. If so, the translation of the
LHS part of this constraint is quite the same as objective translation process. The LHS

part of constraint translation procedure is described in figure 12.

5. Applying Ontology-based Optimization Modelling Tool to
Virtual Enterprise

To show the usability of SWCL and our ontology-based optimization
modelling tool using SWCL, we apply it to solve the production scheduling problem of

a virtual enterprise.
5.1 Virtual Enterprise problem

Virtual enterprise is a temporal alliance of companies that shares resources to
respond to business opportunities better. Obtaining an optimal production schedule for a
supply chain of virtual enterprise is usually the most important factor for its success. In
turn, sharing related information about the production of participating companies is a
critical success factor needed to achieve an optimal solution in the supply chain domain
because it is infeasible to obtain the best production schedule from overall perspectives
across the entire virtual enterprise without transparency and timely access to all the
production situations of participating companies. A real-world example scenario of a
virtual enterprise is shown in figure 13. The virtual enterprise is composed of one prime
company and two subcontract companies. Suppose that a computer produced by the
prime company is assembled with only the one CPU and two memories. Assume that

there is a specific market’s need for a computer type, “vcomputer,” which is equipped

21

with a special type of CPU, “vcpu,” and a specific type of memory, “vmem.” In figure
13, a virtual enterprise is formed to meet this requirement; the figure also shows the
relationship between the assembly company and the vendor companies that supply the

required CPU and memory.

Virtual Enterprise

Nendar] |—,. Assembl}"J—‘_\ Customer 7

Clompany

Vendor 3 J

Fig 13. Supply Chain for Virtual Enterprise

5.2 Constraint sharing among vendors

The virtual enterprise is temporary formed to respond to the new market
demand for the product “vcomputer”, in this case, there are several constraints related to
“vcomputer” are required to be shared among these participating companies. Before
introducing these constraints, we assume that these companies participating in virtual
enterprise schedule their production tasks on a weekly basis. The fundamental
constraints to be shared are those of intrinsic constraints of each company, which are
independent of the virtual enterprise and predetermined by their own. There are two
types of such constraints, namely capacity limitation and weekly demand requirement.

The two constraints can be formulated by a set of mathematical constraints as follows.

22

4
Z X < Capacityy fori=1234k=1234and for all p=cpu,memory,computer 2)
j=i

J
OwnDemandj"k +VeDemandj"k < in}’k for j=1234k =12,3,4and for all p 3)

i=1
Where x; stands for the product p produced at i-th week and consumed st j-th week by

k-th company (we denote vendors 1, 3 in Fig. 15 as k = 1, 3, respectively, and assembly

company as k = 4); Capacity, is the maximum weekly production capacity of k-th
company for p-th product; OwnDemand j is the own demand at i-th week of k-th

company for product p; and VeDemand is the demand from virtual enterprise at i-th

week of k-th company for product p.

On top of that, there are two additional constraints for the case. 1). the demand
of CPU vendors should greater or equal to amount of assembly company. 2). the
demand of Memory vendors should greater or equal to two times of producing amount

of assembly company. These two constraints can be formulated as following.

4
VeDemand ¥’ >) xiq™" fori=1234 4)
j=i

2 4
D VeDemand ™™ > 2x > x5 for i =1,2,34
k=1

j=i 5)
With these constraints, the virtual enterprise describes its objective to be achieved using
our ontology-based optimization modelling tool. The virtual enterprise wants to

minimize its total cost incurred in both production and inventory. This can be

represented as follows:

TC =chpu +Tcmem +TCcomputer 6)
4 4t

TC,,, =C5™ x Z Z Xh' +Vy x ZZ (j—1)- %%’ 7)
i1 =1 =2 il

23

4 i j-1

4
Z[C mem % zz XIrJT(em +Vkmem % Z (J _ I) Xlrjr:(em 8)
i=1 j=1 j=2 i=1
4 i j-1

4
computer computer computer _ computer
TCcomputer C X Z Z XIJ4 V4 X Z (J I) XI]4 9)

i=1 j=1 j=2 i=1
Whereas C denotes that unit production cost of p-th production in k-th company and V,”

stands for the unit inventory cost per week of p-th product in k-th company.

subClassOf

hasConsumptionAmount hasConsumptionCost

hasSpendWeek

hasProduceWeek

hasCapacityVendor

Capacity

subClassOf hasProduceCapability

CPUVendor
AssemblyVendor

hasDemandVendor

hasDemandWeek

hasOwnDemand -

int
hasVeDemand

Fig 14. Schema level of Ontology for Virtual Enterprise

5.3 Virtual Enterprise Ontology Modelling

In order to generate SWCL which is based on the OWL, we need ontology
model that represent the information for these companies. The schema level of ontology
is modelled like figure 14; Vendor class has three subclasses which are Memory Vendor,
CPU Vendor and Assembly Vendor. Consumption class is a class for describing the
information about which vendor produce how many substances and spend in which

week. Capacity and Demand class is standing for the information about a Vendor’s
24

capacity and demand in a specific week.

5.4 Optimization Modelling with Optimization Modelling Tool

Based on the ontology model designed above, we can get the optimization
model with optimization modelling tool we mentioned in section 4. Within this process,
the constraints should be able to be represented after applying Manchester Syntax in our
optimization modelling tool. If so, those constraints in formula 2), 3), 4), 5) will be

represented as following based on the virtual enterprise ontology.

I. Constraint-1:

Producing amount should less or equal than the produce capability in that week.

for all v eVendor,w e Week

a € Consumption AND hasConsumptionVendor VALUE v AND hasProduceWeek VALUE w

b € Capacity AND hasConsumptionVendor VALUE v AND hasCapacityWeek VALUE w

Za.hasConsumptionAmount < b.hasProduceCapability

Il. Constraint-2:

Demand in the week should less or equal than the sum of spending amount.

for all v e Vendor,w € Week
¢ € Demand AND hasDemandVendor VALUE v AND hasDemandWeek VALUE w

d € Consumption AND hasConsumptionVendor VALUE v AND hasSpendWeek VALUE w

c.hasOwnDemand + c.hasVeDemand < Zd.hasConsumptionAmount
d

I11. Constraint-3:
The demand of CPU vendors should greater or equal to producing amount of assembly

25

company.

for all w e Week, z € AssemblyVendor

e e CPUVendor

k € Demand AND hasDemandVendor VALUE e AND hasDemandWeek w

f e Consumption AND hasConsumptionVendor VALUE z AND hasProduceWeek VALUE w

> khasveDemand >)" f hasConsumptionAmount
k f

IV. Constraint-4:

The sum of demands of memory vendors should greater or equal to producing amount

of assembly company.
for all weWeek, z € AssemblyVendor
g € MemoryVendor

q € Demand AND hasDemandVendor VALUE g AND hasDemandWeek w

> ghasveDemand > >"2x f.hasConsumptionAmount
f

q

5.5 Translated Optimization Model in OPL modelling language

With conversion algorithm mentioned in section 4.4, as a consequence, we

could be able to get the translated optimization model in OPL modelling language as

displayed in figure 15.

dvar int+ hasConsumptionAmountv1Consumption1l;
dvar int+ hasConsumptionAmountv1Consumption12;

26

dvar int+ hasConsumptionAmountv1Consumptionl3;
dvar int+ hasConsumptionAmountv1Consumptionl14;

minimize
50*hasConsumptionAmountvlConsumption11+55*hasConsumptionAmountv1Consu
mption12+...+30*hasConsumptionAmountv4Consumption44;

subject to {

hasConsumptionAmountv1Consumption11l+hasConsumptionAmountvlConsumption
12+hasConsumptionAmountv1Consumption13+hasConsumptionAmountvlConsump
tion14<=90;
hasConsumptionAmountv1Consumption23+hasConsumptionAmountv1Consumption
24+hasConsumptionAmountv1Consumption22<=80;
hasConsumptionAmountv1Consumption33+hasConsumptionAmountv1Consumption
34<=90;

hasConsumptionAmountv1Consumption44<=90;
hasConsumptionAmountv3Consumption11+hasConsumptionAmountv3Consumption
14+hasConsumptionAmountv3Consumption12+hasConsumptionAmountv3Consump
tion13<=70;
hasConsumptionAmountv3Consumption22+hasConsumptionAmountv3Consumption
23+hasConsumptionAmountv3Consumption24<=80;
hasConsumptionAmountv3Consumption33+hasConsumptionAmountv3Consumption
34<=75;

Fig 15. Translated optimization model in OPL modelling language

Based on the translated OPL modelling language above, now, we could be
able to use IBM llog Cplex Optimization Studio to solve the problem user generated. As
a consequence, we can get the optimized solution and objective with ease from solver.
In this case, we get the optimized objective 34000 which is the smallest total
consumption cost in this virtual enterprise with specific consumptions for every vendor

displayed in figure 16.

/ solution (optimal) with objective 34000

hasConsumptionAmountv1Consumption1l = 90;
hasConsumptionAmountv1Consumptionl2 = 0;
hasConsumptionAmountv1Consumptionl3 = 0;

27

hasConsumptionAmountv1Consumption14 = 0;
hasConsumptionAmountv1Consumption22 = 70;
hasConsumptionAmountv1Consumption23 = 10;
hasConsumptionAmountv1Consumption24 = 0;
hasConsumptionAmountv1Consumption33 = 90;
hasConsumptionAmountv1Consumption34 = 0;
hasConsumptionAmountv1Consumption44 = 80;
hasConsumptionAmountv3Consumption1l = 35;
hasConsumptionAmountv3Consumption12 = 0;
hasConsumptionAmountv3Consumptionl3 = 0;
hasConsumptionAmountv3Consumption14 = 0;
hasConsumptionAmountv3Consumption22 = 45;
hasConsumptionAmountv3Consumption23 = 0;
hasConsumptionAmountv3Consumption24 = 0;
hasConsumptionAmountv3Consumption33 = 45;
hasConsumptionAmountv3Consumption34 = 0;
hasConsumptionAmountv3Consumption44 = 50;
hasConsumptionAmountv4Consumption1l = 30;

hasVeDemandv2DemandWeek3 = 90;
hasVeDemandv2DemandWeek4 = 80;
hasVeDemandv3DemandWeek1 = 30;
hasVeDemandv3DemandWeek?2 = 40;
hasVeDemandv3DemandWeek3 = 45;
hasVeDemandv3DemandWeek4 = 40;

Fig 16. Optimized solution from IBM llog Cplex Optimization Studio

Virtual Enterprise

Vendor 2

. : ‘ Assembly C'T o ;
- Vendor | \ (“m?_’ﬂj—‘. . ._(“htn“]f_l__- /

Vendor 3 J

Fig 17. Supply Chain for Virtual Enterprise with additional memory vendor

Another scenario is that there’s additional memory vendor — vender 2 want to

28

join the virtual enterprise (figure 17). In this case, the optimization modelling tool could
be able to help us to get the optimized solution with additional memory vendor as well
as help make decision about it’s the better choice to work with additional memory
vendor or not. After assuming that vendor 2 is joining the virtual enterprise, the
objective is minimize the total cost of 4 vendors including vendor 2 with constraints as
the same as previous scenario.

With the same process did in previous case, we could be able to get the
translated optimization model described in OPL modelling language with memory
vendor 2. Also, after solving the problem defined in OPL modelling language, we could
get the optimized solution from IBM llog Cplex Optimization Studio with ease. In
contrast to the case with one memory vendor, we would get optimized solution 31600,
which means, it’s better to work with additional memory vendor and we can save 2400
working with additional memory vendor. This also shows that ontology-based
optimization modelling tool can deal with distributed and ad-hoc business problems

with various objectives.

6. Conclusion

In this paper, we developed optimization modelling tool using SWCL which
could be able to help users define constraints in a meaningful way by providing user-
friendly GUI. In addition, we adapt Manchester Syntax which is designed to describe
OWL description and also less verbal, easy to read and write. Furthermore, as the tool
developed in Protégé as a plug-in, the resources like OWL classes and properties
loading in Protége could be referenced intuitively. For these reasons, users could be able
to define their constraints and objective with our GUI quickly and straightforwardly.

On top of that, we developed the algorithm which can automatically extract the

29

constraints related to the objective defined by users to construct the optimization model.
Additionally, in order to facilitate the conversion of SWCL and OPL modelling
language, we developed the conversion algorithm that can transform from SWCL to the
OPL modelling language automatically. If so, we can simply get the answer from the
IBM llog Cplex Optimization Studio with optimized solution of the problem user
defined. The virtual enterprise example we took in this paper showed that how
efficiently ontology-based optimization modelling tool can help us to provide optimized
solution within distributed and ad-hoc business problem. We believe this will firmly
help users define and share constraints around the Semantic Web which can help users

get optimized objective with supporting decision making for users.

6.1 Summary of Contributions

Reference Reference with
manually OWL APL

Optimization Modeling

Optimization Modeling
Using SWCL Manually

Select related
constraints
manually
SMART

Using SWCL in Protégé

Delect related
1 constraints
automatically
OWLAPI
Tlog statement

Fig 18. Comparison with the previous research

Engine

Compare to the previous researches, the significant contributions of the

research can be summarized as follows.

30

Optimization modelling process using SWCL can be done with Optimization
Modelling Tool in Protégé instead of manual generation.

All constraints related to the objective that user defined can be detected
automatically, not by user selection.

In previous works, user has to check the OWL classes or properties in ontology
manually. With Optimization Modelling Tool, user could be able to reference
resources in ontology more intuitively.

OWL API is used within the interaction of ontology instead of SMART Engine.

Because of this, it’s easier to maintenance and update with OWL language.

31

References

[1]. http://en.wikipedia.org/wiki/Semantic_Web_Stack

[2]. http:/mww.w3.0org/TR/owl-features/

[3]. http:/mww.w3.org/TR/owl2-profiles/

[4]. http:/mww.w3.0rg/Submission/SWSF-SWSL/

[5]. http:/mww.w3.org/Submission/WRL/

[6]. McKenzie, C., Gray, P, and Preece, A. Extending SWRL to Express Fully
Quantified Constraints. Lecture Notes on Computer Science, 2004.

[7]. Youn, S. H. Supporting System for Shopping Decision Making based on SWCL,
Graduate Thesis, 2006.

[8]. Jeong, K. B. Application of Semantic Web Constraint Language SWCL for Virtual
Enterprise. Graduate Thesis, 2007.

[9]. http://www.w3.org/standards/semanticweb/

[10]. http://owlapi.sourceforge.net/index.html

[11]. http://www.w3.0rg/Submission/SWRL/#1

[12]. Pater, S., Patrick, F., Hayes, Lan, H. OWL Web Ontology Language semantics and
abstract syntax. 2004.

[13]. http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab

[14]. Bray, T., Paoli, J., Sperberg-McQueen, C.M., and Maler, E. (eds). Extensible
Markup Language (XML) 1.0. 2000.

[15]. Rector, A., Solomon, W. D., Nowlan, W. A., Rush, T.W. A terminology server for
medical language and medical information systems. Methods of Information In

Medicine, 1994

32

ot= H|Ofe 20060 R E[RACE SEA[Z SWCL Syntax XfA[7t &E9|

Ex8l0 D)5 AstA EHAE|0{OF 87| 20| OWL7|HSZ 8f= SWCLE

2F7t Qo] F=oA HFs5k7| floiM= OwLo| Cigt #H2 Olgf&=7t

T n-:

A —t

M

12
1=

ShaAt & M AYH

i
Hl
rot
4>
il

=
=

rot
b=l
rlo

OfF

2

e

g5t 22N SWCLe| ZHHQl A+E1t §80| o2 RICt.

e

O|Z O|ff52 Si&StAA 2 =E0Me 2F=X| 7[He=z

—

Ot
rir

Yot REAY ES NEL2LEM SWCLO| Chst &d, =8, 4Het #

rlo

r

RIS MEA ez & = AA Sigls #T OfL2t GUIE EA 5t

st TPEOA BZ=0| domain descriptionst 20| ARXF XIBHE QI

Manchester SyntaxZ2 M8%to 2 M AFRX}7} domain descriptions 20 CHgt

33

!

IBM llog Cplex

SLES

A

ol

Optimization Studio®| OPL

KEM| A 21

— L=

x18}A

AL

St SWCLE SWRLANH

IHo

Ho| o

AAANZLSZN ALEQ

SHE
= =

A7let 9%

|

= 3d(ad-hoc) H=L[A ZA| siZnt HEO0 AEAtS 2/AHZEO| HS

o] =

| =&0| & ZOo|LC}.

spSie
O 1=

=1
o

34

Mo
0
o
oH
Hl
T

of-

Us

ASHE Al

HH A
—

oA HA E-LICE B

ORX19E A ARIER| £

LhojZA| 2

(=]
A=

|

o

X|ESZ=A| D

L{ Of A

ChIZEMAN 42 2

£ 7|12

= &[7

CC
A

st 250

=
—

2i0|2t

ag|n

Z A5t

qu

gLt ofd|

Af

I

~nd

OF

B

Off Al

jnu

2

wa

|

o7

Y
o3
KF

%0

ojn

=
10
-

100

il

Ujnu

O|O{7kAl7| Hi2td AFt=o|

=
=

o 753 22t 7|

r

(=13
=

HF2tL|C a2

=
=

p af 2y

ot

OpFE| & otAd 2

SAY

0|,

KK

O|R0{7tA[7] HHEfLICL

35

OX[gez =0 AZ WLr et=0 &AME e EET HESO

Eo{FAIR FHAH oX[7t E0fFAl= ITDTEE 234 &#AF EELCH

RILICE e2s SoZtofA ©ol EojE 1ITDTel of FEHE2EA9

AgrS SHe YUSTARZ}: E|Zi&LCE

36

	Introduction
	Background of the Research
	1.2 Objective and Scopes of the Research

	Related works
	2.1 Semantic Web
	2.2 OWL2.0
	2.3 OWL API
	2.4 SWRL and SWRLTab
	2.5 SWCL

	SWCL Complement
	3.1 Manchester Syntax

	Ontology-based Optimization Modelling Tool using SWCL
	Architecture of Ontology-based Optimization Modelling Tool
	4.2 Constraint Editor
	Optimization Model Constructor
	Optimization Modelling Language Translator

	Applying Ontology-based Optimization Modelling Tool to Virtual Enterprise
	Virtual Enterprise problem
	Constraint sharing among vendors
	Virtual Enterprise Ontology Modelling
	Optimization Modelling with Optimization Modelling Tool
	Translated Optimization Model in OPL modelling language

	Conclusion
	Summary of Contributions

	References

