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ABSTRACT

Motivated by a network fault detection problem, we study how

recall can be boosted in a decision tree classifier, without sacrificing

too much precision. This problem is relevant and novel in the con-

text of transfer learning (TL), in which few target domain training

samples are available. We define a geometric optimization problem

for boosting the recall of a decision tree classifier, and show it is

NP-hard. To solve it efficiently, we propose several near-linear time

heuristics, and experimentally validate these heuristics in the con-

text of TL. Our evaluation includes 7 public datasets, as well as 6

network fault datasets, and we compare our heuristics with several

existing TL algorithms, as well as exact mixed integer linear pro-

gramming (MILP) solutions to our optimization problem. We find

that our heuristics boost recall in a manner similar to optimal MILP

solutions, yet require several orders of magnitude less compute

time. In many cases the 𝐹1 score of our approach is competitive,

and often better, than other TL algorithms. Moreover, our approach

can be used as a building block to apply transfer learning to more

powerful ensemble methods, such as random forests.

CCS CONCEPTS
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1 INTRODUCTION

With the rising use of machine learning (ML) to automate tasks in

a wide variety of new industries, a pain point is often the ability

to transfer a model—either trained using supervised methods, or

hand-crafted by domain experts—to a new, and possibly different,

setting. As a concrete and running example, consider an ML model

trained to detect and assist the diagnosis of faults in a live com-

munication network. If the model is trained using data collected

from a network operator 𝐴, called the source domain, it may not

be directly transferable to a different operator, 𝐵, or target domain.

This is due to the large amount of configuration parameters, cus-

tomized network topologies, and other bespoke customization of

the networks. Even if the model is trained with data from a wide

variety of operators, there is no way, a priori, to guarantee that

this source training data is general enough without having a data

scientist in-the-loop to validate the model in the target domain.

This need represents a major scalability problem for many star-

tups and companies that wish to incorporate ML into their technol-

ogy stack. A further issue for startups that train ML models based

on customer (target domain) data is that stringent regulations may

rule out the possibility of simultaneously accessing the source data

and target data. For example, a customer may be legally unable to

transmit their labeled target domain data to an external company.

Instead, in such cases, ML models must be trained or adjusted in

the customer’s premises. Moreover, it is unlikely that the external

company providing the source model would want to share their

labeled source data.

Towards addressing these issues, we present novel techniques to

expedite the transfer of ML models. Thus, we focus on techniques

for the case of homogeneous transfer learning [34] that have the

following important properties:

(1) The techniques should work in the case of small data, or, in

other words, the case when the amount of labeled data in

the target domain is limited.

(2) The techniques should only require access to the source model

and target data.

(3) Finally, the techniques should also apply to hand-crafted

models, e.g., configuration files created by domain experts.

Such models can be easily converted to decision trees, and

therefore our primary focus is transfer learning methods

that are applicable to decision trees.

Our Contributions: We present a new post-processing method

for binary classification decision trees, based on local expansion of
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orthogonal hyper-rectangles via geometric optimization. The goal

of our method is to improve the recall of the positive class in the

target domain, while minimizing loss of precision. At the core of

many applications are scenarios where recall has higher importance

than precision: e.g., detecting credit card fraud, or diagnosing cancer.

In our networking application, we take an automated remedial

action when a fault is detected. Taking this remedial action is costly,

but has lower cost than allowing the fault to persist, which may

negatively impact mobile phone subscribers.

Geometric optimization has been explored in the context of

probably approximately correct learning [25], and other contexts

discussed in Section 2. However, our method is the first such use in

the context of homogeneous transfer learning. Our method can be

applied to any existing decision tree, and provides an alternative

mechanism for boosting recall, compared to adjusting the classi-

fication threshold, that can achieve superior trade-offs. Decision

trees are a fundamental algorithm in many data mining applica-

tions [26], and are also the building blocks in many widely used

ensemble methods such as random forests [10] and gradient boosted

trees [12]. Thus, our methods are also applicable on top of these

more powerful techniques.

At a deeper level, we define the optimal expansion problem for

decision tree classifiers in Section 3. We show that this problem is

NP-hard, but present a fast heuristic for expansion in Section 3, and

provide a method for automatically tuning the hyper-parameters

of our approach. In Section 6 we perform a comparison of our

method to several state-of-the-art transfer learning algorithms, as

well as an MILP approach that generates an optimal solution to

our expansion problem. Since our approach can be run as a post-

processing method after any existing transfer learning algorithm,

we apply our geometric heuristics on top of these other approaches,

and also define a procedure for selecting which algorithm to apply.

We evaluate our approach and the state-of-the-art algorithms on 7

public datasets, as well as 6 network fault detection datasets. These

experiments show how the various transfer learning approaches

perform in different regimes of data sparsity. Overall we find that

our approach is very effective at boosting recall, and for many

datasets also achieves the highest 𝐹1-scores. Our algorithm com-

pares favorably to an optimal solution in terms of classification

performance, while requiring several orders of magnitude less com-

pute time than an MILP solver. Finally, we compare our method to

one which lowers the classification threshold for the decision tree,

and show it provides favorable trade-offs that are not available via

this alternative method of boosting recall.

2 PRIORWORK & LIMITATIONS

Transfer learning has been studied in many settings, and we refer

the reader to surveys [27, 34] for more details. We follow [34],

separating the related work into the categories of homogeneous and

heterogeneous transfer learning.

Homogeneous transfer learning is the setting in which source

and target domains share a common feature space. Most relevant to

our setting is the work by [31] for homogenous transfer learning on

decision trees (and random forests). They present two algorithms: 1)

STRUT, or structural transfer, which preserves the structure of the

source model but uses a bicriteria optimization of two information

Figure 1: Top left: source tree on source data (two classes; red

‘x’ and green ‘o’). Areas with red (resp. green) background

indicate that points in that region are classified as red (resp.

green). Top right: source tree on target data with additional

noise present. Bottom left: STRUT applied to source tree us-

ing target data. STRUT achieves high precision for green

points, but the right boundary of the left rectangle can be

locally adjusted to boost recall, as indicated by the arrow.

Bottom right: locally expanded rectangle.

theoretic measures – information gain and divergence gain – to

adjust node thresholds, and; 2) SER, or structured expansion and

reduction, that performs certain expansion and reduction steps

on the source model based on the target data. During preliminary

investigation for our motivating use case, we found that STRUT

worked reasonably well in terms of precision. However, a major

deficiency of the algorithm is that it is highly sensitive to changes in

noise levels between source and target domains, and so the adjusted

tree boundary often has poor recall. We provide an illustrative

toy example showing this issue in Figure 1. Note that lowering

the classification threshold in the bottom left panel results in low

precision: a lower threshold turns the middle red area between

the two green rectangles green, even though it contains many red

points.

Another approach, similar to STRUT, has been described in [2].

There is also work not restricted to a specific classification model,

such as that in [22], which generalizes the expansion step of SER to

other models. Frustratingly Easy Domain Adaptation [14], or FEDA,

utilizes a simple yet powerful method of feature augmentation, that

can be applied to any classification model. Other works [23, 29]

explore heterogeneous transfer learning in decision trees.

It is also worth noting that treating a rule-based classifier (or a de-

cision tree) as a union of hyper-rectangles and applying geometric

transformations on them has been explored in many other con-

texts. Salzberg [30] extends the model of exemplar-based learning,

wherein hyper-rectangles are stored as “exemplars” and a sample

point is classified based on distance from these exemplars. Maass

[25] examined the problem in the context of PAC learning, and there

have also been studies on learning empty regions in the dataset,

by Liu et al. [24] and Edmonds et al. [16]. Increasing the recall for
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a primary class in the case of imbalanced datasets was explored

by Grzymala-Busse et al. [18, 19], and by Stefanowski and Vander-

pooten [32]. However, such methods have not been applied in the

context of transfer learning.

Finally we note that some recent works attempt to find optimal

decision trees using various techniques [9, 21, 33]. However, these

works are not concerned with the transfer learning setting, and the

objective function they are attempting to maximize is not focused

on recall. Nonetheless, we compare an MILP formulation of our

optimal expansion problem to our heuristics.

3 GEOMETRIC EXPANSION

In this section we formalize our algorithms for expanding hyper-

rectangles, and provide efficient heuristics. We ignore categorical

features in this section, but our methods operate in the presence of,

without acting upon, such features.

We consider binary classification tasks, with the goal of increas-

ing recall for class 1, noting that by symmetry we can apply the

same procedure to class 0. Let𝑇 denote a decision tree trained on the

source dataset, and, for brevity, denote the target dataset with𝑛 sam-

ples and 𝑑 features as {(𝑥𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑑 ), 𝑦𝑖 ), 𝑖 ∈ {1, . . . , 𝑛}}.
Since we only deal with target data—recall that our algorithms

require no access to the source data—we require no additional no-

tation to distinguish the source and target data.

Consider any leaf node 𝑢 in a decision tree 𝑇 . For an input

(𝑥 ′
1
, . . . , 𝑥 ′

𝑑
) that is contained in 𝑢, the path from the root of 𝑇

to 𝑢 corresponds to a list of threshold conditions and indicators

(𝐶1, 𝐼1), ..., (𝐶𝑘 , 𝐼𝑘 ), where condition 𝐶𝑖 has the form “𝑥 ′
𝑗𝑖
< 𝑡𝑖?” for

some 𝑗𝑖 ∈ {1, . . . , 𝑑} and 𝐼𝑖 indicates whether 𝐶𝑖 is true or false.

Thus, (𝐶1, 𝐼1), ..., (𝐶𝑘 , 𝐼𝑘 ) induces a𝑑-dimensional axis-aligned hyper-

rectangle in the feature space. In what follows, for brevity, we refer

to such axis-aligned hyper-rectangles simply as rectangles. Since a

feature can appear more than once in the path to 𝑢, it may be the

case that the rectangle is unbounded in 𝑑 − 𝑘 ′ dimensions, where

1 ≤ 𝑘 ′ ≤ 𝑘 . For a given decision tree𝑇 , let R1, ...,R𝑧 denote the set

of disjoint rectangles whose union corresponds to the set of points

that are classified as 1 by 𝑇 .

Intuition. Our algorithm proceeds by iteratively, and locally,

expanding each rectangle R, so that the precision of R does not drop

by more than a pre-specified amount 𝛿 ≥ 0, on the target data. Ex-

plicitly, the precision of R is defined as pr(R) =
∑
(𝑥𝑖 ,𝑦𝑖 )∈R 𝑦𝑖∑
(𝑥𝑖 ,𝑦𝑖 )∈R 1

. Since

the target data is sparse, our heuristics assume (and exploit any)

locality in examples of class 1. Since expanding R can only cause

recall to increase, this method—much like lowering the prediction

probability (i.e. classification threshold) for class 1—will result in a

monotone increase in recall.

Optimal Expansion Problem. Consider an 𝑛 sample dataset

{(𝑥𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑑 ), 𝑦𝑖 ), 𝑖 ∈ {1, . . . , 𝑛}} in 𝑑-dimensional fea-

ture space, where each 𝑦𝑖 ∈ {0, 1}. Given a rectangle R containing

at least one data point, and 𝛿 ≥ 0, return a rectangle R★ such that

R ⊆ R★,∑(𝑥𝑖 ,𝑦𝑖 ) ∈R★ 𝑦𝑖 is maximized, and pr(R★) ≥ (1− 𝛿)pr(R).

Theorem 1. The optimal expansion problem is NP-hard.

Proof. Suppose we are given an instance of Maximum Bichro-

matic Empty Rectangle (MBER) [5], which is NP-hard. The decision

problem input is 𝑛 red and blue points, and integer 𝑘 , and output is

“yes” if there exists a rectangle containing at least 𝑘 blue points, but

no red points. We reduce from the MBER problem to our optimal

expansion problem as follows. During a preprocessing phase, all

blue points that overlap with red ones are removed, as they are

never part of a solution to the MBER problem. We assume at least

one blue point remains after this pruning, otherwise the solution

to the MBER instance is trivial. For each remaining blue point, we

create a rectangle that surrounds only that point. For the created

rectangle R, assume we have an oracle that can answer the decision

version of the optimal expansion problem (i.e., determine whether

there is an expansion of R containing at least 𝑘 points in the pos-

itive class). We query this oracle, setting 𝛿 = 0, and treating red

points as those in the negative class, and blue points as those in

the positive class. Since the input rectangle R has pr(R) = 1, and

𝛿 = 0, a “yes” answer to the decision problem implies there exists a

rectangle R★ with pr(R★) = 1 (i.e., no red points) and containing

at least 𝑘 positive (i.e., blue) points. Clearly, if any decision version

of this optimal expansion problem returns “yes”, then the answer

to the MBER instance is “yes”, otherwise the answer is “no”. Since,

i) MBER is NP-hard, ii) our reduction requires time polynomial in

𝑛, and, iii) the optimal expansion decision problem is clearly in NP

via a linear-time verification step, we have shown that the optimal

expansion problem is also NP-hard. □

We remark that there are strong connections to a host of related

geometric problems [3, 6, 7, 15].We note that these related problems

admit a polynomial time solution when 𝑑 is not part of the input

(i.e., a fixed constant value), but this is not a reasonable assumption

for our machine learning setting.

Heuristics for Geometric Expansion. Since we have shown

the optimal expansion problem is NP-hard, we instead focus on

heuristic methods to provide solutions quickly, albeit without guar-

anteeing solution optimality. We next describe our heuristic method

for expanding rectangles, and how to compute it in terms of a set

of abstract data structure operations.

Suppose we are given an arbitrary rectangle R, with “left” bound-
ary lb(R, 𝑗) (i.e., the minimum), and “right” boundary rb(R, 𝑗) (i.e.,
the maximum), with respect to feature 𝑗 . Define the width with

respect to feature 𝑗 as 𝑤 (R, 𝑗) = rb(R, 𝑗) − lb(R, 𝑗). Note that

lb(R, 𝑗) can be −∞ and rb(R, 𝑗) can be∞. Suppose lb(R, 𝑗) = −∞,
but rb(R, 𝑗) is finite (the alternative case is symmetric). We set

𝑤 (R, 𝑗) = rb(R, 𝑗) − 𝛾 , where 𝛾 is the minimum value of fea-

ture 𝑗 among points in R. If both boundaries are infinite, then

𝑤 (R, 𝑗) = ∞. Our heuristics will iteratively expand R by iteratively

adjusting these boundaries of R.
Our prototypical geometric heuristic for expanding a single rec-

tangle is formalized in Algorithm 1. Input parameters to the algo-

rithm are: i) DS, a data structure that supports search operations on

the dataset; ii) a parameter 𝛿 ≥ 0, controlling the allowed drop in

precision on the target data; iii) a value 𝛽 > 0 controlling the rate

of expansion; iv) a value itermax indicating the maximum number

of iterations, and; v) the rectangle R that we wish to expand.

The algorithm first calls DS.Initialize (line 2), preparing the

internal representation of the data structure to support efficient

expansion of the input rectangle R. The heuristic then iteratively

selects the next feature, 𝑗 , and attempts to expand rectangle R with

respect to feature 𝑗 . An expansion factor Δ is computed, which
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Algorithm 1 BasicHeuristic(DS, 𝛿, 𝛽, itermax,R)
Require: Data structure DS, rectangle R, parameters 𝛿 , 𝛽 , itermax

1: R0 ← R
2: DS.Initialize(R)
3: for 𝑗 ∈ {1, . . . , 𝑑} do
4: Δ← 𝛽 ×𝑤 (R, 𝑗)
5: if Δ = 0 or Δ = ∞ then

6: continue

7: for iter ∈ {1, . . . , itermax} do
8: if lb(R, 𝑗) − Δ ≥ min𝑖 𝑥𝑖, 𝑗 then

9: 𝑆 ← DS.collect( 𝑗,−1,Δ)
10: if (1 − 𝛿) · pr(R0) ≤ pr(R ∪ 𝑆) then
11: R ← DS.Commit()
12: else

13: DS.Rollback()
14: if rb(R, 𝑗) + Δ ≤ max𝑖 𝑥𝑖, 𝑗 then

15: 𝑆 ← DS.Collect( 𝑗, 1,Δ)
16: if (1 − 𝛿) · pr(R0) ≤ pr(R ∪ 𝑆) then
17: R ← DS.Commit()
18: else

19: DS.Rollback()
20: return R

determines the rate at which R will expand with respect to feature

𝑗 , based on 𝛽 and the width of R. The algorithm iteratively expands

both the left and right boundaries of R with respect to feature 𝑗 by

Δ, stopping only when either the precision of R drops by more than

𝛿 compared to the original rectangle R0, or itermax is exceeded.

During the process, there are a few crucial operations executed

on the DS. The first is called DS.Collect( 𝑗, sign,Δ) on line 9. LetR ′
be the rectangle induced by extending the lb(R, 𝑗) (resp. rb(R, 𝑗))
to the left (resp. right) by Δ, if sign = −1 (resp. sign = 1). Then,

DS.Collect( 𝑗, sign,Δ) returns the set of points in R ′ \ R (i.e., the

new points added by moving the boundary). This is illustrated for

a case where 𝑑 = 2 in Figure 2. Since adjusting left and right bound-

aries of R may result in too large a precision drop, DS provides the

ability to reverse an expansion (called a Rollback). Alternatively,

after computing the precision of R ∪ 𝑆 , another operation, called
Commit, finalizes the boundary expansion.

Theorem 2. There is a data structure DS that occupies O(𝑛𝑑)
space, supports the operations Collect, Commit, and Rollback, and

can be used to execute the for loop (lines 3-19) in Algorithm 1 inO(𝑛𝑑+
itermax) time after an initial pre-processing phase (i.e., Initialize has

completed on line 2). This pre-processing phase on line 2 requires

O(𝑛𝑑 lg𝑛) time and O(𝑛𝑑) space.

Proof. The data structure DS maintains 𝑑 sorted lists, as well as

several additional structures. Let L 𝑗 , for 𝑗 ∈ {1, . . . , 𝑑}, be the lists
of feature values for the 𝑗-th dimension, sorted in ascending order.

Each index L 𝑗 [𝑘] will store more than just these feature values,

so we denote the feature values as L 𝑗 [𝑘] .val. We re-index the data

set into a rank index I such I[𝑖] represents 𝑥𝑖 , and stores the

list of ranks (𝑘1, ..., 𝑘𝑑 ) such that (L1 [𝑘1] .val, ...,L𝑑 [𝑘𝑑 ] .val) = 𝑥𝑖 .

Next we describe the additional fields associated with each list

element L 𝑗 [𝑘]: i) a back pointer to its associated index in I, such

∆

lb(R, j)

R′ \ R R

∆

rb(R, j)

R′ \ RR

Figure 2: Left: extending the left boundary of R by Δ: see
lines 8-13 of Algorithm 1. Red points are returned as 𝑆 by

the function DS.Collect. Right: symmetric case, extending

the right boundary of R by Δ, performed on lines 14-19.

that I[L 𝑗 [𝑘] .back] [ 𝑗] = 𝑘 , and ii) a flag L 𝑗 [𝑘] .active indicating
whetherL 𝑗 [𝑘] is active in the expanding current rectangle. Overall,

although there are several additional fields for each data point, the

space occupied is linear, O(𝑛𝑑), and it can be constructed in the

time required to sort each list of feature values, or O(𝑛𝑑 lg𝑛) time.

Consider rectangle R input to Initialize. Let {𝑎 𝑗 , 𝑎 𝑗 + 1, . . . , 𝑏 𝑗 }
be the indices of the range of feature values spanned by R in the

𝑗-th dimension. Formally, we have lb(R, 𝑗) ≤ L 𝑗 [𝑎 𝑗 ] .val ≤ ... ≤
L 𝑗 [𝑏 𝑗 ] .val ≤ rb(R, 𝑗). So, all the data points contained in R are

associated with feature values in L 𝑗 between indices 𝑎 𝑗 and 𝑏 𝑗 , but

the converse is not true. Moreover, we can identify 𝑎 𝑗 , 𝑏 𝑗 for all 𝑗

in O(𝑑 lg𝑛) time. We maintain pointers to 𝑎 𝑗 and 𝑏 𝑗 , to keep track

of the current rectangle R.
We maintain the following invariants on the active flags: all

feature values are active in L1. All feature values that are active in

L 𝑗 , for 𝑗 > 1, represent data points that are contained in the current

rectangle R with respect to feature dimensions {1, ..., 𝑗 − 1}. So, by
definition, the feature values that are active in L𝑑 and are in the

range {𝑎𝑑 , 𝑎𝑑 + 1, . . . , 𝑏𝑑 } represent points that are in rectangle R.
We have the following recursive scheme to iteratively expand

R: this describes how the Collect function operates. Suppose

we expand dimension 𝑗 in the positive direction, without loss of

generality. Now rb(R, 𝑗) = 𝛾 . We increment 𝑏 𝑗 , stopping when

L 𝑗 [𝑏 𝑗 ] .val ≤ 𝛾 but L 𝑗 [𝑏 𝑗 + 1] .val > 𝛾 . Let 𝑏 ′
𝑗
be this new value of

𝑏 𝑗 . For any feature values that we encounter in L 𝑗 [𝑏 𝑗 ], ...,L 𝑗 [𝑏 ′𝑗 ]
that were active in L 𝑗 , we find the position of their associated

data point’s feature values in L 𝑗+1 using the back pointers and

index I. We then make their feature values active in L 𝑗+1. If they
are contained in {𝑎 𝑗+1, . . . , 𝑏 𝑗+1}, then we repeat the process for

dimensions 𝑗 + 2, ..., etc. Finally, if 𝑗 = 𝑑 and the active points are

in the range {𝑎𝑑 , . . . , 𝑏𝑑 }, then we add these points to the set 𝑆 .

Finally, we comment on the Rollback and Commit operations.

Conceptually, Collect is reversible, provided we had all the old

values of the pointers 𝑎 𝑗 and 𝑏 𝑗 . Thus, we can easily reverse the

operation. Similarly, Commit need not actually do anything, other

than erase the information necessary to perform a Rollback.

It is clear that the Collect operations can only touch each data

point at most O(𝑑) times, since a data point can only be activated

once in each dimension. Moreover, a point that is de-activated by

a Rollback will never become active later with respect to that

dimension. This means we will never propagate the point to next

active list, so overall each point requires O(𝑑) time to process, since

it was activated in each dimension only once. Thus, Rollback is

at most as expensive as Collect, so the total running time after

Initialize is O(𝑛𝑑 + itermax). □

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

154



We remark that there are existing data structures in the compu-

tational geometry literature that support so-called orthogonal range

queries, such as optimized range trees [11] or kd-trees [8], which

could be leveraged by Algorithm 1. However, our dynamic program-

ming solution exploits the structure of the queries we make in order

to avoid a multiplicative extra cost associated with itermax, which

is especially relevant when 𝑑 is large.
1
Moreover, our algorithm

is very simple to implement and cache-friendly as it boils down

to simultaneous scanning of sorted lists with very few random

accesses.

Initially, we record the precision of each rectangle in the tree 𝑇 .

As a pre-processing step, we then discard all points contained in all

the rectangles R1, ...,R𝑧 . We apply Algorithm 1 to each rectangle

R1, ...,R𝑧 which satisfies 𝑝𝑟 (R𝑖 ) ≥ 𝑝𝑟 (𝑇 ). That is, we only mark

rectangles that have precision higher than the overall precision

(of class 1) of the tree 𝑇 for expansion. After expanding R𝑖 , we
discard all points contained in the expanded rectangle before pro-

cessing R𝑖+1. This is required since, after expanding the rectangles,

they may no longer be mutually disjoint. Let us denote by 𝑇★
, the

rule-based classifier obtained after this process. It can be proved

using simple calculations(which we omit for lack of space) that

𝑝𝑟 (𝑇★) ≥ (1− 𝛿) · 𝑝𝑟 (𝑇 ), which guarantees that the precision does

not decrease by more than a (1- 𝛿) factor on the available target data.

It is important to note that this does not ensure that the precision

of the original tree will only drop by a (1 − 𝛿) factor on any new

(e.g., holdout) data from the target domain.

This process of applying Algorithm 1 to rectangles iteratively

illustrates only one heuristic, whereas many choices are possible.

We found that several variants exhibit similar performance, with a

slight edge given to a heuristic that orders rectangles in decreasing

order of the number of target samples covered, and then expands

them uniformly. Thus, in later evaluation we applied this heuristic.

Setting hyperparameters. Algorithm 1 depends on three hy-

perparameters - 𝛽 , 𝛿 and itermax. We found that the dependence of

the recall and precision on parameters 𝛿 and itermax was monotone:

higher values typically yield higher recall and lower precision if all

other parameters are fixed. We also found that smaller values of 𝛽

are advantageous as they result in more gradual expansion of the

rectangles, avoiding early termination of the algorithm. For all our

experiments, we set 𝛽 = 0.01 (corresponding to a 1% increase in the

width of the rectangle) and then tune itermax automatically using a

grid-search approach that maximizes 𝐹1-score on sampled subsets

of the target data. Thus, from a user perspective, they need only

specify 𝛿 , the multiplicative precision loss parameter, in order to

use our algorithm. For our experiments we used 𝛿 = 0.1.

4 MIXED INTEGER LINEAR PROGRAMMING

We now describe a mixed integer linear programming (MILP) ap-

proach to find the exact solution to the optimal expansion problem.

For a given decision tree 𝑇 , recall that R = {R1, ...,R𝑧 } denotes
the set of disjoint axis-aligned rectangles corresponding to the

leaves labeled 1 in 𝑇 which satisfy pr(R𝑖 ) ≥ pr(𝑇 ). We denote the

corresponding output (i.e., expanded) rectangles by R ′
1
,R ′

2
, . . . ,R ′𝑧 .

1
An implementation using kd-trees would result in an additive itermax𝑛

1−1/𝑑𝑑 term

appearing in the running time, which is inferior to our bound if itermax ∈ 𝜔 (𝑛1/𝑑 ) .

Similar to our heuristics, we conceptually delete all the points con-

tained in any rectangle in the set R from the dataset by marking

them.

Variables: For each rectangle R𝑖 and each feature 𝑗 ∈ 𝑑 , we

have continuous-valued variables 𝑧𝑙
𝑖, 𝑗

representing the left bound-

ary of R ′
𝑖
(i.e. new left boundary of R𝑖 after expansion), in the

dimension corresponding to feature 𝑗 and similarly, variables 𝑧𝑟
𝑖, 𝑗

for the corresponding right boundaries of R ′
𝑖
.

To ensure that each boundary only expands and never contracts,

we add the following constraints:

min

{
lb(R𝑖 , 𝑗), min

𝑘∈{1,...,𝑛}
𝑥𝑘,𝑗

}
≤ 𝑧𝑙𝑖, 𝑗 ≤ lb(R𝑖 , 𝑗) and

max

{
rb(R𝑖 , 𝑗), max

𝑘∈{1,...,𝑛}
𝑥𝑘,𝑗

}
≥ 𝑧𝑟𝑖, 𝑗 ≥ rb(R𝑖 , 𝑗) .

For each rectangle R𝑖 and data point (𝑥 𝑗 , 𝑦 𝑗 ), we have variables
𝑏𝑖, 𝑗 : these would be set to 1 if point 𝑗 is inside rectangle R ′

𝑖
, and

is set to 0 otherwise. To achieve this, we add constraints: 𝑏𝑖, 𝑗 =∧
𝑘∈{1,...,𝑑 }

𝑑 𝑗,𝑘 , where variable𝑑 𝑗,𝑘 = 1 iff𝑥 𝑗,𝑘 ∈ [lb(R𝑖 , 𝑘), rb(R𝑖 , 𝑘)]:

this can be encoded via a pair of indicator constraints. Further, for

each data point (𝑥 𝑗 , 𝑦 𝑗 ), we have binary variables 𝑐 𝑗 =
∨
R𝑖 ∈R

𝑏𝑖, 𝑗

where the logical-OR is over all rectangles R𝑖 . In other words, vari-

able 𝑐 𝑗 is 1 if point 𝑗 is included in some rectangle from the set

R, and is 0 otherwise. For each rectangle R𝑖 and each data point

(𝑥 𝑗 , 𝑦 𝑗 ), we have binary variables 𝑎𝑖, 𝑗 . Variable 𝑎𝑖, 𝑗 is set to 0 if

data point 𝑥 𝑗 is outside rectangle R ′𝑖 ; it is set to 0 or 1 otherwise.

Additionally, for each data point (𝑥 𝑗 , 𝑦 𝑗 ), 𝑎𝑖, 𝑗 is set to 1 for exactly

one rectangle R ′
𝑖
it is in unless it is not covered by any rectangle.

Thus, we observe that: 𝑐 𝑗 =
∑
R𝑖 ∈R

𝑎𝑖, 𝑗 for 𝑗 ∈ {1, . . . , 𝑛}.

Constraints to limit precision drop: For each rectangle R𝑖 ,
we require: pr(R ′

𝑖
) ≥ (1 − 𝛿)pr(R𝑖 ) which translates to:∑

𝑦 𝑗=1
𝑎𝑖, 𝑗 +

∑
(𝑥 𝑗 ,𝑦 𝑗 ) ∈R𝑖

𝑦 𝑗∑
𝑗 ∈{1,...,𝑛}

𝑎𝑖, 𝑗 +
∑

(𝑥 𝑗 ,𝑦 𝑗 ) ∈R𝑖
1

≥ (1 − 𝛿)C(𝑇 ) , (1)

where C(𝑇 ) is a constant that depends only on𝑇 . Thus, this is a set

of linear constraints in terms of variables 𝑎𝑖, 𝑗 .

Objective function: Maximize recall:

∑
𝑦 𝑗=1

𝑐 𝑗 .

5 EXPERIMENTAL SETUP

All our experiments are performed using the Strlet library of [31],

which builds on Weka [20], but uses their own implementation of

Weka’s J48 (C4.5 with normalized information gain) algorithm for

learning source models, with pruning based on the hyperparame-

ters of maximum depth, minimum impurity decrease and minimum

samples in a leaf. Each dataset is partitioned into source and target

data. Further, we then hold out half of the target data for testing

purposes, and use the remaining half for training. For each fraction

of target data (1%-15%), we train the model 20 times using this

percentage of the training data, sampled randomly and stratified.

This exhibits the performance of the heuristics with relatively small

amounts of data from the target domain. In our implementation, we
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use 5-fold cross validation on the source data to tune the aforemen-

tioned hyperparameters. We also experimented with our approach

applied on top of random forests (to each constituent tree) as in

Segev et al. [31]. The results were similar to those for basic decision

trees, and we include some of these comparisons for reference.

We used the following datasets, whose details are presented in

Table 1. All datasets except “Network” are publicly available at UCI

machine learning repository [4]. We selected these public datasets

in line with the previous work [31], adapting them where possible

to a binary classification setting. For ease of reproducibility, we have

uploaded any modified public datasets to a public repository [1].

Table 1: Dataset information: d is the number of features, Src

size is the number of samples in the source data and Src im-

balance ratio (Tgt imbalance ratio) gives the fraction of sam-

ples in source data (respectively target data) from Class 1.

Dataset d

Src

size

Src

imbalance

ratio

Tgt

imbalance

ratio

CreditAU 14 468 0.44 0.45

Wine 11 4898 0.66 0.53

Letter 16 10822 0.055 0.099

Digits 64 5620 0.099 0.1

Landmine 9 8535 0.05 0.07

CreditDE 19 690 0.27 0.35

Invert 784 2000 0.1 0.1

Network 1 197 1508 0.07 0.04

Network 2 197 1508 0.07 0.10

Network 3 197 1508 0.07 0.10

Network 4 197 4643 0.06 0.06

Network 5 197 4643 0.06 0.04

Network 6 197 4643 0.06 0.10

CreditAU [28]: Banking dataset where samples represent credit

card applications. The data is split into source and target domains

based on whether the attribute “A1” is 1 or 0 respectively.

Wine [13]: Wine quality score dataset for white and red wines.

White wines are used as the source domain and red wines as target.

All samples with a quality-score of 6 or more have class 1 (the “fine”

wines), and those with a score less than 6 are class 0.

Letter [17]: Letter recognition dataset with 26 classes and 16

features for classification. Source domain consists of the subset of

the dataset, partitioned as in [31]. Letters “b” and “d” belong to class

1 and all others belong to class 0.

Digits: Images of hand-written digits. As in [31], the source

domain task is identifying digit “6” while the target domain is

identifying the digit “9”.

Landmine: Dataset collected from 29 mine fields, represented

by 9 features and a binary label. The source domain consists of 15

foliaged fields and the target domain consists of 14 barren fields.

CreditDE: German credit risk dataset with two classes (i.e., good

or bad). We use the subset of male customers as source domain and

female customers as target domain.

Invert: MNIST digit database where the target images have

inverted colors as in [31].

Network: Labeled time-series metrics collected from several

networks (different domains) with labeled faults. Normal behavior

is class 0, and observed faults are class 1. There are 6 different

transfer datasets of this type.

Baselines and State-of-the-art Competing Algorithms: Now we

describe the TL algorithms with which we compare our heuristics:

SrcOnly: The baseline approach that trains a model only with

the source domain data without using any target domain data, but

with hyperparameters tuned on the source data.

TgtOnly: Another baseline approach which trains a model only

with the target domain data without transfer learning, and the same

hyperparameters as the source model.

STRUT [31]: The STRUT (structure transfer) algorithm transfers

the structure of the decision tree learned from the source domain

and chooses new thresholds for each tree node based on the target

domain data.

SER [31]: The SER (structure expansion/reduction) algorithm

can refine the decision tree learned from the source domain by

specializing the rules of decision tree with the expansion transfor-

mation or generalizing the rules with the reduction transformation.

We use the implementations of STRUT and SER from the code used

in [31] (can be obtained from http://tiny.cc/kgz5dz).

Our approach, denoted GeoX, is to apply our geometric heuris-

tics to baseline X, where X can be any of the above-mentioned

baselines. We also compare our approach against these three addi-

tional baselines:

Lowering the classification threshold: the classification thresh-

old of the decision tree constructed by SER is set to values ranging

from 0.01 to 0.5.

FEDA [14]: Frustratingly Easy Domain Adaptation (FEDA) is an

instance transfer approach in which all source training examples are

available during the adaptation to the target domain. As pointed

out in [31], this is an unfair comparison as our approach uses

model transfer, which learns without access to source examples.

Nevertheless, we included FEDA to understand the limitations of

our model transfer approach.

MILP: as described in section 4 we used MILP to solve the Opti-

mal Expansion problem, implemented in Gurobi (with Java bind-

ings)
2
. In our experiments, we compare heuristics GeoSER to this

MILP based expansion applied after running SER, which we denote

as MILPSER.

Finally, we implement a tuning algorithm calledAuto that chooses

the best performing TL algorithm among TgtOnly, STRUT and SER
via cross-validation on the available target data, using 𝐹1 as the

scoring metric, and then applies geometric heuristics on top of the

selected transfer algorithm. Note that Auto does not have access

to the test data while choosing the TL algorithm, and so may not

outperform the other algorithms in terms of 𝐹1-score, due to factors

such as overfitting on the the target domain data.

6 RESULTS

Our goal is to increase the recall of the model for class 1, while min-

imizing the loss in terms of precision. To ensure that, we examine

the recall of class 1, precision of class 1, and 𝐹1-score of the model.

The latter metric is the harmonic mean of precision and recall (i.e.,

2(precision × recall)/(precision + recall)) which summarizes the

2
https://www.gurobi.com/
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Figure 3: Digits and Wine datasets: The top chart shows the

recall of class 1 (y-axis) for each heuristic, relative to the

TgtOnly baseline, when the amount of target data available,

as a fraction of the total source data, is varied (x-axis). Mid-

dle chart shows the relative precision of class 1 (y-axis) with

the same x-axis. Finally, the bottom chart shows the relative
difference between the 𝐹1-score of TgtOnly and the other ap-

proaches (y-axis) as target data amount varies.

performance of the binary classifier for class 1, giving equal im-

portance to recall and precision. Generalized scores like 𝐹𝛽 would

give more weight to recall for 𝛽 > 1, and cast our results in a more

favorable light. However, setting an appropriate 𝛽 for each dataset

can be confusing in a multi-dataset comparison, and the choice of

𝛽 hard to justify for the public datasets. Thus, we opt to show 𝐹1 to

give a uniform evaluation of our heuristics. Ideally the heuristics

should increase, or at least not greatly reduce, the 𝐹1-score, while

improving recall.
3
We evaluate the following contexts: i) as we

vary the fraction of target data available; ii) compared to another

method of boosting the recall; iii) across the 13 datasets described;

iv) compared to an MILP approach, and v) on top of random forests.

6.1 Varying the fraction of target data

Figure 3 shows the results of the TgtOnly, SER and GeoSER algo-

rithms on two of the public datasets (Digits and Wine). In the

figure we show the results for each of the metrics (recall, precision,

and 𝐹1-score) with respect to TgtOnly, and for different amounts of

data used from the target domain. Results above the TgtOnly line
indicate that the model transfer approaches are providing superior

performance compared to training only on the available target data.

The figure shows that whenever the amount of target data is below

a 0.1 fraction of the source data, both SER and GeoSER have better
𝐹1 scores than TgtOnly. This indicates firstly that there is some

potential gain by using these transfer learning methods when target

3
Since our expansion method cannot decrease recall, the change in the 𝐹𝛽 score after

applying our method would only be greater, for 𝛽 > 1, than the change with respect

to the 𝐹1 score.

Figure 4: Effect of varying the classification threshold (CT)

compared to our heuristic. Top: relative recall comparison to

SER with default classification threshold (0.5). Middle: pre-

cision comparison. Bottom: relative 𝐹1-score.

data is scarce. Secondly, we see that there is a distinct trade-off in

terms of recall and precision: as expected, SER tends to have higher

precision, and lower recall than GeoSER. Thirdly, this trade-off is

relatively stable as the fraction of target data varies. In particular,

we observe that the gain in recall (resp. loss in precision) is 7.7 (resp.

6.9) on average for Digits dataset, and 7.1 (resp. 1.0) on average

for the Wine dataset, and the actual trade-off is close to this as the

fraction of target data is varied. Finally, we remark that by adjusting

𝛿 to a smaller value e.g., 0.05 we get similar behavior though with

less of a difference between recall and precision.

6.2 Varying the classification threshold

Reducing the classification threshold is a natural way to boost recall

at the cost of precision. In Figure 4, we present two datasets that

are representative of the two types of trends we observed: other

datasets showed qualitatively similar trends.

In the CreditAU dataset, GeoSER gives competitive recall values

when the fraction of target data used is above 0.1. For lower frac-

tions, setting the classification threshold to lower than 0.3 yields

higher recall. However, there is a drop in the 𝐹1-score for these

settings of the threshold, whereas GeoSER has higher 𝐹1-score.

On the other hand, in the Letter dataset, we find that GeoSER
gives higher recall even compared to the heuristic which sets the

classification threshold to as low as 0.01, with less loss in precision.

We conclude that the trade-offs offered by our heuristic differ from

those offered by adjusting the classification threshold.

6.3 Comparison across all datasets

Table 2 records the recall and 𝐹1-scores, for a target dataset that

contains 5% of the samples as the source dataset, for each algorithm.

In terms of recall, we observe from Table 2 that for each dataset, the
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Table 2: Recall and 𝐹1-score values for class 1 when the target data size is 5% of the source data size. Except Auto and FEDA, every
other heuristic X has 2 sub-columns, the first corresponding to X itself (e.g. STRUT) whereas the second containing values for

GeoX (e.g. GeoSTRUT). The highest values of recall and 𝐹1-score appear in bold. For instance, for the dataset Letter, GeoSER gives
the highest recall of 84.3, whereas the highest 𝐹1-score of 75.4 is exhibited by FEDA.

Recall 𝐹1-score

Dataset

Src
Only

Tgt
Only

STRUT SER Auto FEDA
Src
Only

Tgt
Only

STRUT SER Auto FEDA

X GeoX X GeoX X GeoX X GeoX X GeoX X GeoX X GeoX X GeoX

CreditAU 80.4 87.2 70.4 77.4 84.0 86.1 83.1 86.4 87.5 83.3 83.7 86.6 74.7 78.3 83.5 84.4 85.0 86.6 86.0 83.8

Wine 36.1 65.1 66.6 81.8 69.4 80.5 70.6 77.7 83.1 69.4 47.0 67.1 69.1 73.3 69.6 72.8 71.0 74.0 74.1 70.7

Letter 50.3 72.0 75.0 80.0 60.9 67.5 74.8 84.3 77.7 72.5 52.5 61.1 75.3 72.3 67.5 69.0 71.4 69.7 70.5 75.4

Digits 0.0 0.0 63.7 71.4 35.0 38.8 69.1 76.8 73.5 0.0 0.0 0.0 64.3 64.6 38.6 40.3 68.7 68.3 66.1 0.0

Landmine 2.9 10.3 25.9 31.7 22.1 27.9 23.7 34.8 32.0 12.9 3.7 5.3 24.5 22.3 25.0 23.9 23.0 22.3 22.9 17.8

CreditDE 37.0 45.1 42.0 46.1 35.2 39.5 28.5 29.0 35.8 37.0 39.6 42.7 44.4 46.2 39.9 42.3 35.9 35.7 40.0 43.2

Invert 0.0 0.0 67.7 77.5 49.5 54.8 29.3 38.5 80.0 62.6 0.0 0.0 62.2 57.0 46.2 40.2 31.1 30.9 60.2 61.9

Network 1 43.4 52.6 34.0 38.2 29.5 38.7 19.3 34.5 35.0 34.1 39.1 39.7 37.5 38.2 36.3 35.7 24.7 29.3 33.4 40.8

Network 2 63.8 64.4 52.1 55.7 55.8 64.6 50.9 55.3 61.2 51.0 43.8 42.7 55.6 55.2 60.7 59.9 53.6 51.0 56.4 53.2

Network 3 42.0 42.4 52.6 57.9 53.8 59.1 51.4 59.0 61.1 60.6 36.5 36.3 58.0 57.0 66.8 65.4 52.8 51.5 62.5 58.7

Network 4 73.8 84.3 67.4 73.4 36.1 58.7 73.1 83.9 76.0 72.7 50.0 49.2 68.5 66.0 39.5 52.2 69.1 59.1 62.3 71.5

Network 5 67.1 73.2 45.3 51.3 33.6 48.6 54.1 63.8 56.4 61.3 47.0 46.3 50.7 49.7 40.3 44.1 50.7 45.5 46.6 59.2

Network 6 75.4 75.4 70.8 75.6 64.4 74.4 78.4 82.6 80.4 62.1 34.3 34.3 71.7 68.3 70.8 69.4 78.9 76.4 74.3 69.2

GeoX heuristics are top performers, but that the algorithm X varies

depending on the dataset. On the public datasets the Auto heuristic
has the best recall in 3 cases, and is close to the top score in 2 others

(Digits and Landmine). Since these are the mean scores over 20

runs, with a different 5% of the target data used for training during

each run, Auto can exceed the scores of other algorithms.

For 𝐹1-score, we observed that SrcOnly always performs worse

than TgtOnly after the fraction of target data exceeds 0.1 for both

the public and network datasets. Moreover, with notable exceptions

(Letter and Invert), there is a TL heuristic that beats TgtOnly
for most fractions of target data in terms of 𝐹1-score on the pub-

lic datasets. This shows positive transfer is possible for most of

the public datasets. For the network datasets, we find GeoSrcOnly
achieves high recall scores on 4 of the 6 datasets, but never wins

in terms of 𝐹1. For these datasets, FEDA is consistently among the

top in terms of 𝐹1-score, but STRUT and SER also perform well. We

note that GeoSTRUT often beats STRUT in terms of 𝐹1, while Auto is

consistently competitive in terms of recall and 𝐹1.

Table 3 records the increase in recall after applying the geometric

heuristic to each TL algorithm. Note that for every baseline decision

tree, applying our geometric heuristic only increases the recall. Fur-

thermore, for most public datasets, the 𝐹1-score increases for both

TgtOnly and STRUT, while SER does not drop by more than 1.7. For

the network datasets, the 𝐹1-scores are somewhat lower, especially

for GeoSER, but Auto has consistently good performance in terms of

recall and 𝐹1. Thus, we conclude that there can be general benefits

to applying these techniques on top of TL algorithms, especially

when recall is of more importance than precision. Moreover, auto-

matic selection of the TL algorithm using an approach like Auto is

prudent, since it is unknown which algorithm will work best.

Finally, Tables 4 and 5 show standard errors of the heuristics for

both recall and precision, respectively, over the 20 runs. The small

standard errors are indicative of scores tightly centered around the

mean, implying robustness of our methodology.

Table 3: Change in recall, precision and 𝐹1-score of baseline

X comparedwith GeoXwhen the target size is 5% of the source

size. For instance, the first entry of the table indicates that

for the CreditAU dataset, averaged over 20 runs, (recall us-

ing GeoTgtOnly) - (recall using TgtOnly) = 7.0

ΔRecall ΔPrecision Δ𝐹1-score

Dataset Tg
tO
nl
y

ST
RU
T

SE
R

Tg
tO
nl
y

ST
RU
T

SE
R

Tg
tO
nl
y

ST
RU
T

SE
R

CreditAU 7.0 2.1 3.3 -1.8 -0.4 -0.1 3.6 0.9 1.6

Wine 15.2 11.1 7.1 -6.0 -3.8 -1.0 4.2 3.2 3.0

Letter 5.0 6.6 9.5 -9.7 -5.6 -8.9 -3.0 1.5 -1.7

Digits 7.7 3.8 7.7 -6.0 -1.7 -6.9 0.3 1.7 -0.4

Landmine 5.8 5.8 11.1 -6.1 -8.8 -6.2 -2.2 -1.1 -0.7

CreditDE 4.1 4.3 0.5 -0.4 -0.5 -2.3 1.8 2.4 -0.2

Invert 9.8 5.3 9.2 -12.1 -13.2 -10.6 -5.2 -6.0 -0.2

Network 1 4.2 9.2 15.2 -4.0 -15.6 -14.9 0.7 -0.6 4.6

Network 2 3.6 8.8 4.4 -6.1 -11.7 -10.0 -0.4 -0.8 -2.6

Network 3 5.3 5.3 7.6 -8.6 -16.2 -9.4 -1.0 -1.4 -1.3

Network 4 6.0 22.6 10.8 -10.3 -2.2 -20.0 -2.5 12.7 -10.0

Network 5 6.0 15.0 9.7 -9.9 -13.1 -12.6 -1.0 3.8 -5.2

Network 6 4.8 10.0 4.2 -10.6 -14.2 -8.0 -3.4 -1.4 -2.5

6.4 Comparison to MILP optimal solution

Table 6 compares MILPSER and GeoSER with respect to recall, pre-

cision and 𝐹1 for a target data set that is 5% of the source data

size. Overall, MILPSER has recall similar to GeoSER in most cases.

Note that it is not guaranteed by the optimality of the rectangle,

that MILPSER has higher recall than GeoSER. Invert was the only
dataset where the MILPSER greatly improved the recall (by 11.2)

compared to GeoSER. However, for a larger fraction of target data

(10%) the discrepancy for Invert was not as large (only 2.1), while
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Table 4: Standard Errors for Recall over 20 runs.

Dataset Sr
cO
nl
y

Ge
oS
rc
On
ly

Tg
tO
nl
y

Ge
oT
gt
On
ly

ST
RU
T

Ge
oS
TR
UT

SE
R

Ge
oS
ER

CreditAU 0.0 0.01 0.04 0.04 0.02 0.02 0.01 0.01

Wine 0.0 0.01 0.02 0.02 0.02 0.01 0.02 0.02

Letter 0.0 0.01 0.01 0.01 0.02 0.02 0.01 0.01

Digits 0.0 0.0 0.02 0.02 0.04 0.04 0.02 0.02

Landmine 0.0 0.03 0.01 0.01 0.01 0.01 0.01 0.01

CreditDE 0.0 0.03 0.02 0.03 0.02 0.02 0.01 0.01

Invert 0.0 0.0 0.04 0.03 0.08 0.09 0.02 0.03

Table 5: Standard Errors for Precision over 20 runs.

Dataset Sr
cO
nl
y

Ge
oS
rc
On
ly

Tg
tO
nl
y

Ge
oT
gt
On
ly

ST
RU
T

Ge
oS
TR
UT

SE
R

Ge
oS
ER

CreditAU 0.0 0.01 0.03 0.02 0.01 0.01 0.0 0.0

Wine 0.0 0.0 0.01 0.01 0.01 0.01 0.01 0.01

Letter 0.0 0.01 0.01 0.01 0.02 0.02 0.01 0.01

Digits 0.0 0.0 0.02 0.01 0.04 0.04 0.01 0.01

Landmine 0.0 0.0 0.01 0.01 0.01 0.01 0.01 0.0

CreditDE 0.0 0.0 0.02 0.02 0.01 0.01 0.02 0.02

Invert 0.0 0.0 0.02 0.02 0.04 0.06 0.02 0.01

the recall on the other datasets were similar, indicating these differ-

ences are unstable as the amount of target data varies.

In Table 7 we show the average running times (over 20 runs) of

these two heuristics, alongwith themultiplicative speedup obtained

by using GeoSER over MILPSER. In many cases, GeoSER offers a large
speedup over MILPSER, often greater than a factor of 100 when

the target dataset contains a few hundred points. In the extreme

case of the Wine dataset, the MILP solver did not terminate within

8 hours, so we can only estimate the speedup. Importantly, the

Wine dataset is relatively balanced, meaning that there are several

hundred class 1 samples in the target dataset. Wine is unique in

this sense, as the other datasets are highly imbalanced. This shows

an issue of scalability with the MILPSER solution. Finally, there

are a few exceptional cases where MILPSER is faster than GeoSER.
However, in these cases the running times of both approaches are

between 50-200 milliseconds. Overall, based on these results, we

conclude that GeoSER consistently outperforms MILPSER in terms

of running time, while providing similar recall-precision trade-offs.

Table 6: MILP results (target size is 5% of source).

Recall Precision 𝐹1-score

Dataset SER
MILP
SER

Geo
SER

SER
MILP
SER

Geo
SER

SER
MILP
SER

Geo
SER

CreditAU 83.1 88.2 86.4 87.1 85.5 87.0 85.0 86.8 86.6

Wine 70.6 ? 77.7 72.3 ? 71.3 71.0 ? 74.0

Letter 74.8 83.2 84.3 68.5 60.5 59.6 71.4 69.9 69.7

Digits 69.1 74.5 76.8 68.9 60.5 62.0 68.7 66.5 68.3

Landmine 23.7 33.4 34.8 22.7 16.4 16.5 23.0 22.0 22.3

CreditDE 28.5 33.1 29.0 49.5 46 47.2 35.9 38.1 35.7

Invert 29.3 49.7 38.5 38.1 33.1 27.5 31.1 38.4 30.9

Table 7: Comparing the average running time of MILPSER
with that of GeoSER in seconds. The Speedup column gives

the multiplicative speedup of GeoSER over MILPSER. For ex-

ample, for the Letter dataset, when the target size is 10% of

source size, GeoSER is 178.94 times faster than MILPSER.

Tgt size = 5% of Src size Tgt size = 10% of Src size

Dataset

MILP
SER

Geo
SER

Speedup

MILP
SER

Geo
SER

Speedup

CreditAU 0.062 0.054 1.14 0.13 0.10 1.3

Wine > 8 hrs 0.23 >125819 > 8 hrs 0.32 >90851

Letter 24.27 0.49 49.53 216.52 1.21 178.94

Digits 0.45 0.10 4.5 2.81 0.32 8.78

Landmine 13.94 0.28 49.78 161.3 0.81 199.13

CreditDE 0.069 0.19 0.36 0.062 0.126 0.49

Invert 0.75 0.69 1.08 1.62 1.38 1.17

6.5 Random forests

Table 8 shows results analogous to Table 3, for random forests. With

random forests, in most cases there is a greater increase in recall,

but also a greater drop in precision. However, the recall gain more

often than not can be considered to compensate for the precision

loss: the change in 𝐹1-score is typically positive. Moreover, the drop

in 𝐹1-score never exceeds 1.7% for any dataset, in constrast to a

drop of 6% when using only decision trees, which occurs for the

Invert dataset with STRUT.

Table 8: Random forest (30 trees; target size is 5% of source).

ΔRecall ΔPrecision Δ𝐹1-score

Dataset Tg
tO
nl
y

ST
RU
T

SE
R

Tg
tO
nl
y

ST
RU
T

SE
R

Tg
tO
nl
y

ST
RU
T

SE
R

CreditAU 4.0 3.0 2.7 -1.5 -1.6 -0.4 1.4 0.7 1.1

Wine 17.8 10.7 14.8 -11.7 -5.7 -9.4 -0.2 1.9 0.3

Letter 7.2 3.5 12.1 -9.1 -6.5 -13.1 0.3 0.4 1.0

Digits 12.4 7.2 16.7 -4.6 -1.3 -5.1 6.9 11.0 11.3

Landmine 3.8 4.2 7.3 -15.7 -18.5 -35.8 -1.5 1.8 -1.7

CreditDE 9.7 7.2 5.3 -3.1 -2.2 -2.0 5.4 4.8 5.3

Invert 13.4 21.8 19.2 -17.1 -2.2 -21.4 -1.6 17.7 -0.1

7 CONCLUSION

We presented novel geometric heuristics to improve the recall of

decision tree classifiers. These heuristics can be applied in the

context of homogeneous transfer learning when we have access to

only a small number of target data samples. Overall, our heuristics

boost recall, while achieving competitive 𝐹1-scores compared to

state-of-the-art algorithms.

Boosting alternative objective functions, such as precision, or

attempting to simultaneously improve metrics for both positive

and negative classes, are interesting avenues for future work. We

remark that our algorithms can be adapted to shrink the rectangles

with similar running times, but that was not our aim as the focus

was on improving recall. However, simultaneously expanding and

shrinking the rectangles would require new algorithmic ideas.
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