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Abstract. Wikidata as one of the largest open collaborative knowledge
bases has drawn much attention from researchers and practitioners since
its launch in 2012. As it is collaboratively developed and maintained by
a community of a great number of volunteer editors, understanding and
predicting the departure dynamics of those editors are crucial but have
not been studied extensively in previous works. In this paper, we inves-
tigate the synergistic effect of two different types of features: statistical
and pattern-based ones with DeepFM as our classification model which
has not been explored in a similar context and problem for predicting
whether a Wikidata editor will stay or leave the platform. Our exper-
imental results show that using the two sets of features with DeepFM
provides the best performance regarding AUROC (0.9561) and F1 score
(0.8843), and achieves substantial improvement compared to using either
of the sets of features and over a wide range of baselines.

Keywords: Wikidata editors · Crowdsourcing dynamics · Classification.

1 Introduction

Wikidata [28] is a community-driven knowledge base with its initial primary goal
to be a central knowledge base to serve all Wikimedia projects. Since its launch
in late 2012, it has become one of the most active projects of the Wikimedia
Foundation in terms of contributors [13]. As one of the largest open, free, mul-
tilingual knowledge bases, Wikidata has contributed significantly to the Linked
Open Data Cloud34 and our research community along with DBpedia [11]. Wiki-
data currently contains over 90M items and over 13B edits have been made since
the project launch5, and has been widely used in various domains such as natural
language processing [10], recommender systems [23], and life sciences [29].

As a community effort, editors on open collaborative knowledge bases such
as Wikidata and Wikipedia add and edit information collaboratively and play
a crucial role in the growth of those platforms. Therefore, in the context of

3 https://lod-cloud.net/
4 https://bit.ly/2O1KZAV
5 https://www.wikidata.org/wiki/Wikidata:Statistics/en

https://lod-cloud.net/
https://bit.ly/2O1KZAV
https://www.wikidata.org/wiki/Wikidata:Statistics/en
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Wikipedia, there have been many studies on predicting the editing dynamics
of users6 such as how many contributions an editor will make or whether the
editor will stay on or leave the platform [31,2]. Similar to Wikipedia, editors on
Wikidata platform are critical to its success and understanding editing dynamics
such as whether an editor will leave the platform is important but little attention
has been given in the context of Wikidata [24], which is our focus of this study.

We seek answers to questions such as (1) what types of features are use-
ful for predicting the departure dynamics of Wikidata editors, (2) what types
of machine learning (ML) approaches perform well for the prediction, and (3)
how well those approaches applied to Wikipedia can perform in the context of
Wikidata. To this end, we investigate different types of features and investigate
a wide range of ML approaches including best-performing ones adapted from
previous studies in the context of Wikipedia, and investigate a new approach
adopted from the recommender system domain which has not been explored in
previous studies for predicting whether an editor will stay on or leave Wikidata.
In summary, our contributions are: (1) We investigate two sets of features –
statistical and pattern-based ones – for predicting inactive editors on Wikidata
(Section 3). We show the synergistic effect on using both sets of features in Sec-
tion 6, which has not been used together in a similar context; (2) We adopt
DeepFM model [9] as our classification approach, which is exploited for the pre-
diction task in the context of Wikidata for the first time to our best knowledge,
and show its effectiveness by comparing a wide range of classification models
in Section 6 including those applied to Wikipedia; (3) Our source code and the
processed Wikidata dataset can be found here7. The dataset includes more than
5B edits by 371,068 users (Section 4), which can be a good resource for studying
different problems such as recommending Wikidata items.

2 Related Work

In the context of Wikipedia, many studies have been conducted regarding the
departure dynamics of Wikipedia editors in the literature. For example, Gandica
et al. [7] defined a function of edit probability and showed that the editing be-
havior of Wikipedia editors is far from random and the number of previous edits
is a good indicator of their future edits. Zhang et al. [31] proposed a ML ap-
proach with a set of statistical features extracted from different periods of each
user’s edit history for predicting the future edit volume of Wikipedia editors
where they showed that GBT (Gradient Boosted Trees) and kNN (k-Nearest
Neighbors) provide the best performance. Instead of statistical features, Arelli
et al. [1,2] proposed leveraging pattern-based features with respect to consecu-
tive edited pages, and constructed Boolean features regarding a set of frequent
patterns for predicting whether a Wikipedia user might leave or stay on the
platform. In addition to predicting activeness or edit volume of users, other as-
pects regarding edit behaviors such as quality, edit sessions on the platform, and

6 We use the words editors and users interchangeably in this rest of the paper.
7 https://bit.ly/3yyJhZj

https://bit.ly/3yyJhZj
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the difference between Wikipedians and non-Wikipedian editors have been stud-
ied as well [4,8,16]. In contrast to the popularity of previous studies regarding
different aspects on Wikipedia, less studies have been explored in the context
of Wikidata, which is our focus in this study for classifying potential inactive
Wikidata editors.

Recently, Mora-Cantallops et al. [14] conducted a literature review of research
on Wikidata and revealed the main research topics on Wikidata such as users
and their editing practices, knowledge organization, external references, and the
language of editors [19,21,10]. We focus on the first topic (users and their edit-
ing practices), which is most relevant to our work. Piscopo et al. [20] studied
different types of editors such as bots, human editors, registered, anonymous ed-
itors to understand how those editors influence the quality of items on Wikidata.
In [15,3] the authors performed a cluster analysis of the editing activities of Wiki-
data editors to compare them with typical roles found in peer-production and
collaborative ontology engineering projects, and studied the dynamic participa-
tion patterns across those characterized roles of Wikidata editors. More recently,
Sarasua et al. [24] conducted a large-scale longitudinal data analysis for Wikidata
edit history over around four years until 2016 to study the evolution of different
types of Wikidata editors. Their study revealed many interesting findings such
as the number of new editors joining the Wikidata has been increasing over time,
and the majority of contribution has been made by a few editors with a skewed
distribution of contributions. We observe that similar trends have continued in
our Wikidata dataset with edit history until 2020 (Section 4). The authors [24]
also investigated the edit volume and the lifespan (i.e., short or long) of editors
during their active time on Wikidata where their focus is on gone editors.

Compared with those works, we focus on the problem of predicting the ac-
tiveness of registered editors in the future on Wikidata in this work, investigate
the synergistic effect of considering both statistical and pattern-based features,
and exploit DeepFM model for the first time for the problem.

3 Proposed Approach

This section provides a formal definition of the Wikidata user classification task,
followed by the description of the proposed approach.

Problem formulation. Our goal is to learn a binary classifier f(xu)→ yu
where xu denotes a set of features based on the edit history of a user u, and yu
is the class label indicating activeness of u with 1 for inactive and 0 for active.

Overview of our approach. The approach for the classification task of
Wikidata editors consists of (1) statistical and/or pattern-based features, and
(2) a DeepFM classification model where those features are used as an input.

3.1 Statistical Features

Here we discuss the set of statistical features used in our model. These features
utilize the edit history of Wikidata editors. All of these features try to capture
users’ editing behavior on Wikidata from different perspectives.
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1. Total # of edits (Ntotal·edit·ent) indicates the total number of edits have been
made by an editor on Wikidata.

2. Distinct # of edited entities (Ndist·edit). The total # of edits does not dis-
tinguish edited entities. This feature aims to capture the number of distinct
entities have been edited by a user.

3. Diversity of edit actions (Divedit·act). To capture the diversity of different
types of edit actions (see Section 4), we use the Shannon-Entropy [25] of
different edit actions in the same manner as in [24] as: H(T ) = −

∑n
i=1 P (ti)·

logP (ti) where T indicates different types of edit actions, and |T | = n.
4. Diversity of entities (Divent). We measure the diversity of edited entities

of a user using the Shannon-Entropy. The intuition is that the diversity of
edited entities of a user could also be different across active and inactive
editors.

5. The # of days between first and last edits (Tedit) refers to the time difference
between a user’s first and last edits during a certain period.

6. Diversity of day of week (Divday). This measures the diversity of day of the
week based on the edit history of each user using the Shannon-Entropy.

7. The # of days between first edit and prediction time (Lfirst·pred). This in-
dicates the time difference between a user’s first edit on Wikidata and the
prediction time to predict whether a user will become inactive or not.

8. The # of days between the last edit and prediction time (Llast·pred) indicates
the time difference between a user’s last edit and the predicted time.

For the first six features, we extract those in the last p months from the prediction
time using 10 different time periods p ∈ P = { 1

16 ,
1
8 ,

1
4 ,

1
2 , 1, 2, 4, 12, 36, 108} to

capture the editing behavior over different time periods, which has been inspired
by [31] in the context of Wikipedia for predicting the edit volume of users. For
instance, we extract the set of features based on the edit history from the last
12 months from the prediction time when p = 12. Here, 108 months in our
Wikidata dataset (see Section 4) cover the whole edit history of each editor. As
a result, there are 6 × 10 + 2 = 62 statistical features in total. As one might
expect, some of those features can be skewed and we apply a logarithmic scale,
xafter = log(xbefore + 1), to them before feeding those into any ML approach.

3.2 Pattern-based Features

In contrast to statistical features such as the above-mentioned ones, pattern-
based features have been explored in the context of Wikipedia for predicting the
departure dynamics of editors [1]. To investigate which type of features performs
better or the synergistic effect of combining those two sets of features for our
classification task on Wikidata, we investigate those statistical and pattern-based
features – separately and together – in our experiments in Section 5. In the
following paragraphs, we describe the set of pattern-based features used.

To start with, the edit history of each user is considered as a chronological
sequence of each consecutive pair (i1, i2) of edited entities. For each pair (i1, i2),
the following information is extracted for describing each pair:
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– r/n: Whether i2 is an entity that has already been edited by the user before,
i.e., r if i2 is a re-edit, and n otherwise.

– m/n: Whether i2 is a normal entity (n) or others such as properties (m). On
Wikidata, each entity is identified by a unique entity ID, which is a number
prefixed by a letter (Q, L, P)8. Here we consider an entity which starts with
“Q” as a normal entity.

– If i2 is a re-edit – c/n: Whether i1 is the same as i2, i.e., these are two
consecutive edits (c) on the same entity or not (n).
Otherwise (i2 is a new edit) – z/o/u: Common classes (via the property
instance of ) between entity i1 and i2: z for zero classes in common, o for at
least one class in common, and u for information is not available.

– v/f/s: Time difference between the two edits where v indicates very fast
edit (less than three minutes), f refers to fast edit (less than 15 minutes),
and s for slow edit (more than 15 minutes).

For example, rncv for a pair of entities (i1, i2) indicates that i2 is a re-edit (r)
and is a normal entity (n) which is the same as i1 (c), and the time difference
between the two consecutive edits is less than three minutes (v). Given this
representation of edit history, pattern-based features can be extracted with the
following two main steps [1].

First, frequent patterns from the active and inactive user edit histories in
the training set are extracted separately using PrefixSpan [18] algorithm, which
is one of the fastest sequential pattern mining algorithm. Those pattern-based
features are extracted using SPFM data mining library [6]. Each pattern contains
a sequence of pairs of entities consecutively edited by an editor where each pair is
described using above-mentioned features (e.g., rncv). Afterwards, the frequency
of each pattern f is calculated for both the active and inactive classes.

Next, two sets of patterns are extracted where the first one contains top
frequent patterns that appear in both classes based on the absolute frequency
difference between the two classes, and the second set contains top frequent
patterns only appear for active class9. Finally, we select the set of top k patterns
of length l that appear for both classes and for active editors only. We used the
same setting as in [1] where k = 13 and l ∈ {1, 2, 3}, which results in a total
of 78 Boolean features for any classifier as an input with 1 indicates a pattern
appears in the edit history of an editor, 0 otherwise.

3.3 DeepFM as the Classification Model

On top of above-mentioned features, we adopt a DeepFM-based classification
model which was proposed in [9] for recommender systems. To the best of our
knowledge, this is the first attempt of utilizing the DeepFM model for user clas-
sification tasks on Wikidata. DeepFM was designed to automatically capture

8 https://www.wikidata.org/wiki/Wikidata:Identifiers: items are prefixed with
Q, properties are prefixed by P, lexemes are prefixed by L.

9 Similar to the observation in [1], there is no pattern only appears for inactive editors.

https://www.wikidata.org/wiki/Wikidata:Identifiers
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Fig. 1: DeepFM architecture from [9], which consists of two main components:
FM part on the left and DNN part on the right.

feature interactions by modeling low-order feature interactions through Factor-
ization Machines (FM) and high-order feature interactions via Deep Neural Net-
works (DNN). Intuitively, modeling different types of interactions via DeepFM
plays a crucial role in capturing the temporal dynamics of editing behaviors.

The model consists of two main components: an FM component and DNN
component as illustrated in Figure 1. Moreover, the model has the ability of
memorizing low- and high-order feature interactions and generalizing feature
combinations by jointly training the FM and DNN components for the combined
prediction model:

ŷ = σ(ŷFM + ŷDNN ) (1)

where ŷFM indicates the output from the FM part, ŷDNN indicates the output
from the DNN part of DeepFM, and σ is the sigmoid function. In the following,
we briefly introduce the FM component and Deep component separately.

The FM component of DeepFM is a factorization machine introduced by Ren-
dle et al. [22] to learn feature interactions for recommender systems. It consists
of two parts with the first one considers linear interactions among features, and
the second one with pairwise feature interactions as inner product of respective
feature latent vectors as follows.

ŷFM =
〈
w,x

〉
+

d∑
i=1

d∑
j=i+1

〈
vi,vj

〉
xixj (2)

where w,x ∈ Rd, vi ∈ Rk, and d and k indicate the number of features and the
dimension of a feature’s latent factor, respectively. And 〈·, ·〉 is the dot product
of two vectors.

The DNN component is a feed-forward neural network which aims to learn
high-order feature interactions. The first layer a(0) in Eq. 3 is an embed-
ding layer which compresses the input field vectors to the embedding vectors:
[e1, e2, . . . , em] for sparse/categorical features where for dense/numerical fea-
tures the embedding layer will be ignored. DeepFM reuses the latent feature
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vectors in the FM component as network weights which are learned and used
for this compression, and the FM and DNN components share the same feature
embeddings.

a(0) = [e1, e2, . . . , em], a(l+1) = σ(W(l)a(l) + b(l)) (3)

ŷDNN = W|H|+1a|H| + b|H|+1 (4)

where a(l), W(l), and b(l) refer to the output, weights, and bias of l -th layer,
and |H| is the total number of hidden layers.

Training details We use the cross-entropy loss (or log loss) as our loss function,
and the objective is to minimize the loss over all N training examples.

L = − 1

N

N∑
i=1

[yi · log ŷi + (1− yi) · log (1− ŷi)] (5)

where yi and ŷi denote the ground truth and the predicted probability of class
1 for i-th instance, respectively. To resolve the overfitting problem, we use 20%
of the training data as our validation set to adopt an early stopping strategy.
We run up to 1,000 epochs for training, but the early stopping strategy stops
the training if there is no improvement of AUROC (Area Under the Receiver
Operating Characteristics) on the validation set.

4 Wikidata Dataset

In this section, we discuss the Wikidata dataset for our study and provide ex-
ploratory analysis with respect to edit history of Wikidata users in Section 4.1.
We use the Wikidata dump of 2020-12-0110 with respect to edit history for our
study. As we are interested in ordinary human editors who are registered on
Wikidata, we further excluded edits from anonymous users (who we only know
an IP address), bot accounts and administrators of Wikidata based on the open
bot list11 and admin list12. After filtering, the dataset contains 371,068 users
with 519,121,793 edits in total for our analysis and experiments. The raw data
includes crucial edit information for each edit such as:

– Username which indicates unique username who made an edit.
– Time with respect to the edit.
– Entity which refers to the unique entity ID such as Q13580495.
– Edit action type which denotes an automatic comment such as

wbcreateredirect (Creates entity redirects) generated by the Wikidata’s
backend13. We choose top 50 edit action types which covers 99.9% of the
whole data and treat the rest as “others”.

We explore the filtered Wikidata dataset in detail in the following.

10 https://dumps.wikimedia.org/wikidatawiki/20201201/
11 https://www.wikidata.org/wiki/Wikidata:Bots
12 https://www.wikidata.org/wiki/Wikidata:Administrators
13 Registered actions in Wikidata’s backend: https://bit.ly/39NsrMh

https://dumps.wikimedia.org/wikidatawiki/20201201/
https://www.wikidata.org/wiki/Wikidata:Bots
https://www.wikidata.org/wiki/Wikidata:Administrators
https://bit.ly/39NsrMh
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Fig. 2: (a) Histogram of editors in terms of the number of edits, and (b) CDF of
edits for those editors on Wikidata until 2020-12-01.

4.1 Exploratory Analysis of the Dataset

First, we look at the distribution of edit volume on Wikidata. Figure 2a shows
the histogram of the number of edits of all users. The figure illustrates that
there are a lot of users making a low number of edits while a small number of
heavy users making a high number of edits. The CDF (Cumulative Distribution
Function) plot of edits in Figure 2b further illustrates this phenomenon. More
specifically, the green dot in the figure refers to a point that 295 out of 371,068
users (0.08%) contributed 80% of the total edits. In addition, the blue dot indi-
cates that 2,705 (0.73%) users contributed 95% of all edits, which again shows
that a small number of users have contributed the majority of the edits.

Next, we look at the lifespan of those editors, i.e., the duration between a
user’s first and last edits in days. The histogram of Wikidata users’ lifespan is
shown in Figure 3a, where the lifespan of each user is scaled logarithmically
using natural logarithm. As we can see from the figure, there are three distinct
areas where the first two areas on the left correspond to occasional users who
stopped editing Wikidata entities after the first few edits or newly joined editors,
while the right area corresponds to editors with deeper interests in staying in the
community and keeping editing Wikidata entities until they lose interest because
of some reason. The separation point between the first two areas and the last
one is 6.54 hours. This is shorter than the observation on editors’ lifespan on
Wikipedia [31] where the point for separation is around 8 hours.

Finally, we analyze the number of users who started or stopped editing Wiki-
data as well as that of users who started and stopped editing for each year from
2012 to 2020. On top of the same analysis done for the period between 2012 and
2016 in [24], our analysis including recent years could provide some insights on
the trends the number of editors who started or stopped. Figure 3b shows an
increasing trend over the years regarding the number of users in three aspects
(i.e., who started, stopped, started and stopped). The numbers of stopped (as
well as started and stopped) for 2020 are excluded in the figure as we have no
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Fig. 3: (a) Histogram of editors in terms of their lifespan in days, and (b) the
number of editors started and stopped using Wikidata from 2012 to 2020.

clue about the last edits of users in 2020 are indeed their last edits. Hence, we
cannot consider them as stopped. The figure illustrates that although the num-
ber of newcomers is increasing, the number of users who stopped contributing
to Wikidata is also increasing, which again shows the importance of predicting
leaving editors and additional efforts might be needed to keep those users, e.g.,
recommending entities of their interests to edit.

5 Experimental Setup

In this section, we discuss our experimental setup including datasets for training
and testing our user classification approaches (Section 5.1), a set of methods for
comparison and evaluation (Section 6.1), and evaluation metrics (Section 5.3).

Instead of defining a new threshold for determining an editor as inactive
based on his/her activity, we adopt the definition of a recent study from Sarasua
et al. [24] for deriving the ground truth labels of editors. According to [24], if a
user has not been editing any entity for 9.967 months (299 days), we consider
the user as an inactive user (who stopped using Wikidata)14.

5.1 Dataset

Similar to previous studies, we further limit users with more than one edit for
training and testing different approaches including ours. Figure 4 illustrates how
the dataset is divided into training and testing sets, which aims to resemble a
real-world scenario. In the figure, ttest indicates the timestamp which is 9.967

14 The threshold should make the majority of user labels (active or inactive) stable,
e.g., the majority of inactive users decided based on their activities until a timestamp
t and the predefined threshold should remain inactive after t. This suggests a higher
value for the threshold is desirable, e.g., 9.967 months is better than 3 months, and
we observe that the majority of inactive users do not visit the platform afterwards.
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Fig. 4: Dataset split for training and testing and their statistics.

ttrain
9.967

Training

Testing

9.967ttest

f

f

Training (# of users) Test (# of users)

Active Inactive Total Active Inactive Total
29,509 31,283 60,792 32,068 33,500 65,568

months before the last edit time in our dataset, and ttrain refers to the times-
tamp which is 9.967 months before ttest. We train a classification model f based
on the edit history of users before ttest and their ground truth labels (i.e., inac-
tive if there is no edit in the 9.967 months between ttrain and ttest, and active
otherwise), and test with f for predicting whether a user will be active or in-
active after ttest. For both training and testing, we limit users who are active
before ttrain and ttest to predict whether those active users will remain active
or become inactive. Take testing as an example, we limit active users based on
their activity between ttrain and ttest, i.e., those inactive users during the time
between ttrain and ttest by our definition are already “gone” and therefore ex-
cluded for testing. As summarized in Figure 4, there are 60,792 editors with
29,509 active and 31,283 inactive ones in the training set, and 65,568 editors in
total with 32,068 active and 33,500 inactive ones in the test set for evaluation.

5.2 Compared Methods

Due to the difference between our task and the tasks of previous studies discussed
in Section 2, and the difference between the Wikidata and Wikipedia datasets,
those approaches from previous works could not apply to our problem directly.
Nevertheless, we tried our best to adapt five previous approaches proposed in the
context of Wikipedia or different tasks for our task in the context of Wikidata in
addition to using DeepFM to investigate the classification performance. We use
a naming convention of [ML model]-[the first two characters of the main

author] in the following to distinguish those methods adapted for comparison,
and provide their details.

GBT-Zh [31] uses Gradient Boosted Trees with three features such as the
number of edits, the number of edited entities, and the length between the first
and the last edit extracted from each of the 10 periods in P for each user in
the same manner as ours. We tuned the max depth hyper-parameter with a
grid search over {2, 4, 6, 8, 10} using a 3-fold cross validation. The drift feature
which measures the average number of edits of all editors in [31] is the same
for all examples and is not important for our classification task although it is
important for predicting the number of edits of users by capturing the overall
changes of edit volume over time. Therefore, this feature is excluded in this
adapted method.

kNN-Zh [31] leverages the same set of features as GBT-Zh but uses kNN as
the classification model. The number of neighbors k is drawn from 200 to 3,000
in step of 200 using a 3-fold cross validation.
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RF-Sa [24] is adapted to our context using Random Forest with a set of
features such as the number of total edits, the average number of edits per item,
the number of distinct items edited, and the diversity of types of edits extracted
from each of the last 10 consecutive months introduced in [24]. Similar to GBT-Zh,
we tuned the max depth hyper-parameter with a grid search over {2, 4, 6, 8, 10}
using a 3-fold cross validation. The ML model used in [24] was designed to
analyze the edit volume of each user during his/her lifetime on Wikidata before
he/she becomes inactive (or leaves the platform), and cannot be directly applied
in our context for several reasons. For example, it trains a RANSAC model [5]
for each user with the aforementioned features, and uses the parameters of the
RANSAC model for training a Random Forest model to classify high/low volume
or long/short lifespan editors with the focus on “gone” users. As one might
expect, this results in not only training a great number of RANSAC models but
also requires a good number of edits for each user for fitting the corresponding
RANSAC model. Therefore, we use the set of features with Random Forest
directly here as our baseline.

LR-Sa [24] leverages the same set of features as RF-Sa but uses Logistic
Regression for classification. We tuned the regularization strength with a grid
search over {0.1, 1, 10, 100, 1000} using a 3-fold cross validation.

SVM-Ar is adapted from [1] which utilizes the set of pattern-based features
introduced in Section 3.2 with a Support Vector Machine (SVM) classifier for
predicting inactive editors. We tuned the regularization strength and the kernel
parameter (γ) of a non-linear Radial Basis Function (RBF) kernel of SVM with
a grid search over {0.1, 1, 10, 100, 1000} and {1, 0.1, 0.01, 0.001, 0.0001} using a
3-fold cross validation.

DeepFM-Stat refers to the proposed approach using DeepFM with the set of
statistical features introduced in Section 3.1. We implemented DeepFM-Stat with
DeepCTR library [26]. After tuning parameters such as dropout, batch sizes, and
the number of hidden layers using 20% of the training set for validation, we opt
to use the default DeepFM architecture of DeepCTR, which uses two hidden
layers both with 128 nodes for its DNN part, embedding size k = 4, without
dropout [27] as there is no significant improvement compared to the default
architecture.

DeepFM-Pattern uses the same architecture as DeepFM-Stat but uses the set
of pattern-based features used for SVM-Ar and introduced in Section 3.2.

DeepFM-Stat+Pattern considers both the statistical features and pattern-
based features, which has not been explored together before. We investigate the
synergistic effect of those two sets of features in the context of DeepFM.

We implemented GBT-Zh, kNN-Zh, RF-Sa, LR-Sa, and SVM-Ar with scikit-
learn [17]. For DeepFM with different sets of features such as Stat, we run
five times and the results in Section 6 are based on the averages over the five
runs. All experiments are run on a laptop with Intel(R) Core(TM) i5-3230M
(@2.6GHZ) processor and 8GB RAM.
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5.3 Evaluation Metrics

We use AUROC /AUC (Area Under the Receiver Operating Characteristics),
F1 (F1 score) to evaluate the classification performance of different methods
introduced in Section 6.1. The F1 score: F1 = 2 · precision·recall

precision+recall is the harmonic
mean of precision and recall, where the precision is the number of true positive
predictions divided by the number of total positive predictions, and the recall
refers to the number of true positive predictions divided by the number of all
instances should have been predicted as positive. Compared to F1 where clas-
sification is based on a single threshold 0.5 (one if the predicted probability is
equal or higher than the threshold, and zero otherwise), AUROC reflects the
classification performance at various threshold settings by measuring the area
under the ROC curve, which shows a trade-off between the true positive rate
and false positive rate. We analyze the F1 score of inactive class and AUROC
as our focus here is predicting editors that would become inactive.

6 Results

In this section, we first investigate the classification performance of those meth-
ods introduced in Section 6.1, and analyze the usefulness of our statistical fea-
tures introduced in Section 3.1 in detail.

6.1 Comparison with the Set of Different Methods

Here we discuss the results with respect to two questions mentioned in Section 1
such as what types of ML approaches perform well for the prediction, and how
well those approaches applied to Wikipedia can perform in the context of Wiki-
data. Table 1 shows the overall classification results in terms of AUROC and
F1 with the set of methods compared. As shown in the table, for approaches
using either statistical or pattern-based features, DeepFM-Stat achieves the best
performance of AUROC (0.8928) and F1 (0.8247) followed by GBT-Zh. Despite
the fact that GBT-Zh is adapted from edit volume prediction on Wikipedia, we
notice that the approach provides a strong performance with an AUROC score
of 0.8890 and an F1 score of 0.8205 for classifying inactive users on Wikidata
as well. Similar to the observation for predicting edit volume on Wikipedia, the
classification performance of kNN-Zh is worse than GBT-Zh with the same set of
features. RF-Sa and LR-Sa, which are adapted from the method for analyzing the
edit volume of a Wikidata editor during his/her lifetime on the platform, perform
worse than other methods. Overall, DeepFM-Stat improves the AUROC score
0.43%-16.75% and the F1 score 0.51%-6.15% compared to those non-DeepFM
alternatives either using statistical features or pattern-based ones for classifying
inactive editors on Wikidata.

Next, we investigate what types of features (e.g., statistical, pattern-
based, or both of them) are useful in the context of DeepFM. We observe
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Table 1: Classification performance of the set of methods compared in terms of
AUROC and F1 with the best-performing ones in bold.

Method AUROC F1

GBT-Zh 0.8890 0.8205
kNN-Zh 0.8731 0.7935
RF-Sa 0.7647 0.7769
LR-Sa 0.7656 0.7795
SVM-Ar 0.8396 0.8029
DeepFM-Pattern 0.8786±0.0002 0.7992±0.0028
DeepFM-Stat 0.8928±0.0001 0.8247±0.0006
DeepFM-Stat+Pattern 0.9561±0.0005 0.8843±0.0012

that DeepFM-Stat+Pattern, which considers both the statistical and pattern-
based features together, further improves the performance significantly com-
pared to using either statistical or pattern-based features alone. For example,
DeepFM-Stat+Pattern achieves an AUROC score of 0.9561 and an F1 score of
0.8843, which outperforms DeepFM-Stat (+7.09% of AUROC, +7.23% of F1 )
and DeepFM-Pattern (+8.82% of AUROC, +10.65% of F1 ). This shows that
the two types of features – statistical and pattern-based ones – can complement
each other and achieves the best classification performance on predicting inactive
editors, which has not been explored in previous studies15.

Finally, Figure 5 illustrates the time required for training each of those
methods where we observe all except SVM-Ar can be trained within 30 min-
utes. As one might expect, leveraging both statistical and pattern-based fea-
tures (DeepFM-Stat+Pattern) results in increased training time compared to
only using either of the sets of features. The training/fitting time for all meth-
ods is arguably reasonable, which can be updated periodically (e.g., every day or
week) easily, and the time can be further improved with a better infrastructure.

6.2 Analysis of Statistical Features

In this section, we analyze the set of statistical features introduced in Section 3.1
to answer the following questions: (1) Are those features improving the classi-
fication performance compared to the features adapted in previous studies when
the same ML approach is applied? (2) How much improvement can we achieve
by considering a greater number of periods in P? (3) Which statistical feature
contributes the most to the performance with DeepFM?

Contribution of proposed features. Here we investigate whether using
our features improves the classification performance compared to using the set
of features that are adapted from previous studies when the same ML approach
is applied. Table 2 illustrates the performance in the context of four different

15 Similar trends can be observed when we limit users with at least five edits instead
of one. For example, DeepFM-Stat+Pattern provides the best performance and im-
proves AUROC 10.7% and 11.5% compared to using GBT-Zh and kNN-Zh.
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Fig. 5: Time required for training.
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Fig. 6: Impact of the number of periods.

Table 2: Proposed features used with different classification approaches.*-Stat
indicates * model with our statistical features introduced in Section 3.1.

AUROC (Improvement) F1 (Improvement)

GBT-Zh 0.8890 0.8205
GBT-Stat 0.8918 (+0.32%) 0.8225 (+0.24%)

kNN-Zh 0.8731 0.7935
kNN-Stat 0.8898 (+1.91%) 0.8172 (+2.99%)

SVM-Ar 0.8396 0.8029
SVM-Stat 0.8640 (+2.91%) 0.8040 (+0.14%)

DeepFM-Zh 0.8922±0.0001 0.8223±0.0029
DeepFM-Stat 0.8928±0.0001 (+0.07%) 0.8247±0.0006 (+0.29%)

methods such as GBT, kNN, SVM, and DeepFM. The results show that using
our statistical features consistently achieves better AUROC and F1 scores with
those methods, which indicates the effectiveness of those features.

Contribution of periods in P . Next, we demonstrate how the performance
changes with the increasing number of periods considered to construct the set
of statistical features. More specifically, we start from considering the shortest
period ( 1

16 for p), and add the next period in P one by one for each experiment.
The experimental results are shown in Figure 6. It illustrates that taking more
periods for extracting temporal dynamic features improves the performance for
both AUROC and F1 where the improvement gradually diminishes. In particu-
lar, the performance is improved significantly when the 8th period (12 months)
is added where the AUROC improves from 0.8631 to 0.8885 (+2.94%), and the
F1 score improves from 0.7921 to 0.8211 (+3.66%).

Contribution of each feature. Finally, we investigate which feature con-
tributes the most to the classification performance by removing each feature. The
results are illustrated in Figure 7 where the performance is averaged over five
runs when each feature is removed. The figure demonstrates that, Ntotal·edit·ent
– the number of total edits in the last p ∈ P months – is a set of features that
contribute the most in terms of both AUROC and F1. This is in line with the
findings from [7] which shows the number of edits before is a good indicator
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Fig. 7: Impact on DeepFM-Stat when each statistical feature is removed.

of the future edits of an editor on Wikipedia. We also notice that all other fea-
tures contribute to a certain extent for F1 score while the contribution of other
features except Ntotal·edit·ent to AUROC is lower than that to F1.

7 Conclusions

In this paper, we investigated a wide variety of classification approaches to pre-
dict Wikidata editors who will leave the platform. To the best of our knowledge,
this is the first work on predicting inactive editors on Wikidata. To this end, we
investigated a set of proposed statistical features together with a set of adapted
pattern-based features and leveraged DeepFM as the classification method from
recommender systems. In addition, we also built several adapted approaches
from previous studies in the context of Wikipedia or different tasks, and in-
vestigated those approaches for our classification problem regarding Wikidata
editors. We have shown, in the evaluation, that DeepFM-Stat achieves the best
AUROC and F1 performance compared to other adapted methods when using
either set of features. In addition, we also showed that using both statistical and
pattern-based features can improve the performance significantly and achieves
the best AUROC and F1 score. The promising results with DeepFM indicate
that other alternative models invented for recommender systems [12,30] can be
explored in the future for our problem. We also believe our Wikidata dataset
containing the edit history over seven years will benefit the research community
for studying other aspects related to Wikidata such as recommender systems
for recommending entities of interest or understanding edit behavior difference
between registered and anonymous editors etc.

Despite the promising performance, there are many interesting questions left
unanswered. First, our work does not reveal the set of most influential patterns
of the 78 patterns which might provide some interesting insights regarding im-
portant edit patterns for the prediction. Secondly, we adopted the threshold –
9.967 months – from a recent study [24] for determining whether an editor left
the platform. The impact of using different threshold values for deriving the
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ground truth labels of editors needs to be further investigated. Finally, current
approaches require manual feature engineering. In the future, we plan to focus
on end-to-end approaches and investigate whether an end-to-end classification
model without manual feature engineering is feasible.
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13. Malyshev, S., Krötzsch, M., González, L., Gonsior, J., Bielefeldt, A.: Getting the
most out of wikidata: Semantic technology usage in wikipedia’s knowledge graph.
In: International Semantic Web Conference. pp. 376–394. Springer (2018)



Learning to Predict the Departure Dynamics of Wikidata Editors 17

14. Mora-Cantallops, M., Sánchez-Alonso, S., Garćıa-Barriocanal, E.: A systematic
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