
Enhancing Text-Based Hierarchical Multilabel Classification for
Mobile Applications via Contrastive Learning

Jiawei Guo

Tencent

Shenzhen, Guangdong, China

javedguo@tencent.com

Yang Xiao

Xidian University

Xi’an, Shaanxi, China

yxiao@xidian.edu.cn

Weipeng Huang
∗

Shenzhen Institute of Information Technology

Shenzhen, Guangdong, China

weipenghuang@sziit.edu.cn

Guangyuan Piao

Independent Researcher

Dublin, County Dublin, Ireland

parklize@gmail.com

Abstract

A hierarchical labeling system for mobile applications (apps) ben-

efits a wide range of downstream businesses that integrate the

labeling with their proprietary user data, to improve user modeling.

Such a label hierarchy can define more granular labels that capture

detailed app features beyond the limitations of traditional broad

app categories. In this paper, we address the problem of hierarchical

multilabel classification for apps by using their textual information

such as names and descriptions.We present: 1) HMCN (Hierarchical

Multilabel Classification Network) for handling the classification

from two perspectives: the first focuses on amultilabel classification

without hierarchical constraints, while the second predicts labels

sequentially at each hierarchical level considering such constraints;

2) HMCL (Hierarchical Multilabel Contrastive Learning), a scheme

that is capable of learning more distinguishable app representations

to enhance the performance of HMCN. Empirical results on our

Tencent App Store dataset and two public datasets demonstrate

that our approach performs well compared with state-of-the-art

methods. The approach has been deployed at Tencent and the mul-

tilabel classification outputs for apps have helped a downstream

task—credit risk management of users—improve its performance

by 10.70% with regard to the Kolmogorov-Smirnov metric, for over

one year.

CCS Concepts

• Computing methodologies→ Neural networks; Supervised

learning by classification.

Keywords

Hierarchical Multilabel Classification, Contrastive Learning, App

Classification

∗
Corresponding Author.

This work is licensed under a Creative Commons Attribution 4.0 International License.

KDD ’25, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1454-2/2025/08

https://doi.org/10.1145/3711896.3737216

ACM Reference Format:

Jiawei Guo, Yang Xiao, Weipeng Huang, and Guangyuan Piao. 2025. En-

hancing Text-Based Hierarchical Multilabel Classification for Mobile Appli-

cations via Contrastive Learning. In Proceedings of the 31st ACM SIGKDD
Conference on Knowledge Discovery and Data Mining V.2 (KDD ’25), Au-
gust 3–7, 2025, Toronto, ON, Canada. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3711896.3737216

1 Introduction

Tencent App Store
1
is one of the most widely used app stores in

China. It has 200millionmonthly active users with over 30,000 appli-

cations (apps). These apps are organized in a hierarchical structure

that can be considered a topic taxonomy. Behind the scenes, apps

are categorized into one or more topics or labels in the taxonomy,

which consists of three levels. The top level has broad topics such

as “Finance”, “Video” or “Game” and the lower levels have granular

topics as shown in Fig. 1. Organizing items into such a taxonomy is

a common practice in industry, and it can be used in many down-

stream tasks such as providing personalized recommendations for

users based on interacted items and associated topics or creating

Ad campaigns
2
[3, 11, 17, 38]. Such a hierarchical structure enables

downstream business applications to capture more detailed and

comprehensive aspects of apps. As an example, businesses that

run credit risk management can apply the classification results to

strengthen their user profiling and modeling, thereby improving

their risk management models.

The task of classifying apps into correct topics in the taxonomy

can be treated as a hierarchical multilabel classification problem. In

our case, an app consists of three types of textual information: 1)

the app name, 2) the app description, and 3) the editorial comments

summarizing the key functionalities of the app. Therefore, encoding

these textual features into a vector representation or embedding of

the app is an important step, which is then followed by building a

classification model based on those app embeddings.

Intuitively, we expect the similarity score of app embeddings

with similar topics to be higher than that of unrelated ones in

the embedding space. This may be observed in the right heatmap

in Fig. 2. For example, the similarity between two online video apps

(IQiYi and Tencent Video) is much higher than the similarity

between unrelated apps like Taobao (a shopping app) and Tencent

1
https://sj.qq.com/

2
https://developers.google.com/privacy-sandbox/private-advertising/topics

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3711896.3737216
https://doi.org/10.1145/3711896.3737216
https://sj.qq.com/
https://developers.google.com/privacy-sandbox/private-advertising/topics

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jiawei Guo, Yang Xiao, Weipeng Huang, and Guangyuan Piao

Root

Finance

Investment Loan

Credit Loan Mortgage Loan

Video Game

Moba RPG Strategy

Figure 1: An example of label hierarchy. Moba: multiplayer

online battle arena games; RPG: role-playing games.

Video. We can use a straightforward approach such as a pretrained

BERT [9] or one of its variants such as RoFormer [30] to derive the

corresponding app embeddings based on the concatenated text of

these three types of textual information. However, as shown in the

left heatmap in Fig. 2, the similarity scores between app embeddings

are not distinguishable using such a straightforward approach,

which in turn results in non-optimal classification performance.

Based on the above observations, we propose a Hierarchical

Multilabel Classification Network (HMCN) with a pretrained en-

coder using a Hierarchical Multilabel Contrastive Learning (HMCL)

scheme, for classifying apps in the Tencent App Store. More specif-

ically, our contributions are highlighted as follows:

(1) We propose a Hierarchical Multilabel Contrastive Learning

(HMCL) scheme in Section 4, which results in better app

embeddings as shown in the right side of Fig. 2.

(2) We present the HMCN (Section 3.3), a hierarchical multilabel

classification network incorporating two classification an-

gles: a global one treating all labels in the hierarchy equally,

and a local one maintaining different embeddings for predict-

ing the label assignments at different levels. The experiments

in Section 5 on our Tencent App Store dataset as well as on

two public datasets show that our approach provides the

best classification performance on the app dataset, and com-

petitive performance on the public ones.

(3) The HMCN together with HMCL has been deployed at Ten-

cent for over one year and the classification results have

been used for assessing credit risks of users. Compared to

the previously deployed approach, incorporating app labels

from our approach shows 10.70% improvement on the key

evaluation metric, Kolmogorov-Smirnov (KS) value, of the

downstream task (Section 5.5).

In fact, our solution is more suited to small business teams since it is

far less demanding of the computational resources and deployment

resources compared to, e.g., large language models [24, 41].

2 Related Work

Hierarchical multilabel classification methods can be broadly cate-

gorized into global and local approaches [29]. The global approaches

degenerate the hierarchical multilabel classification task into a

multilabel classification task [12], which are simple to implement

but are often prone to underfitting. These methods mostly center

Hon
or

 of
 K

ing
s

King
do

m R
us

h
IQ

iYi
Te

nc
en

t V
ide

o
Sho

pe
e

Ta
ob

ao

Honor of Kings

Kingdom Rush

IQiYi

Tencent Video

Shopee

Taobao

1 0.91 0.83 0.86 0.83 0.83

0.91 1 0.85 0.84 0.84 0.83

0.83 0.85 1 0.92 0.84 0.85

0.86 0.84 0.92 1 0.85 0.87

0.83 0.84 0.84 0.85 1 0.91

0.83 0.83 0.85 0.87 0.91 1

App Embedding

Hon
or

 of
 K

ing
s

King
do

m R
us

h
IQ

iYi
Te

nc
en

t V
ide

o
Sho

pe
e

Ta
ob

ao

1 0.71 -0.1 -0.07 -0.16 -0.14

0.71 1 -0.08 -0.07 -0.18 -0.15

-0.1 -0.08 1 0.98 0.01 0.06

-0.07 -0.07 0.98 1 0.05 0.11

-0.16 -0.18 0.01 0.05 1 0.98

-0.14 -0.15 0.06 0.11 0.98 1

App Embedding after HMCL

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Example of app embedding (cosine) similarities

after HMCL (Hierarchical Multilabel Contrastive Learning)
3
.

around developing encoders or decoders that encapsulate the hier-

archical constraints [23, 26, 37, 42]. In contrast, local methods pass

the information from parent to children, and hence predict labels

for each level of the hierarchy from top to bottom [2, 4, 16, 19, 28].

The HMCN [35, 36] has shown its effectiveness by combining both

global and local approaches. Our work falls into this category and

adapts the HMCN to accommodate the multi-field, text-based de-

scription of apps. Motivated by suboptimal app embeddings ob-

tained via a pretrained BERT (or its variant), as illustrated in Fig. 2,

we introduce hierarchical multilabel contrastive learning for pre-

training the text encoder for the HMCN.

Contrastive learning (CL) [6, 14, 27] is a methodology for learn-

ing a representation space that allows similar data to get closer

together while the pushing dissimilar data further apart. This ap-

proach enhances a model’s ability to distinguish between relevant

and irrelevant features, ultimately improving its performance on

downstream or end-to-end tasks such as classification and cluster-

ing. However, the classical CL has focused primarily on unsuper-

vised learning and multiclass classification [5, 13, 15, 18, 25]. For

multilabel classification in recent studies [32, 39], the supervised

loss function is modified by introducing weights, derived from the

similarity of the label vectors of samples, to adjust the loss for

sample pairs. Wang et al. [34] develop a hierarchy encoder and a

text encoder to respectively encode hierarchical labels and input

text. It generates a positive peer for a data item by removing the

unimportant words from the data item itself. Zhu et al. [43] also

employ a structural text encoder to encode hierarchical labels and

input text. The work differs from [34] in that it projects the label

and text vectors into the same space; hence, they define the positive

sample pairs as the corresponding label and text vectors. Although

Zhang et al. [40] adopt the term “hierarchical multilabel contrastive

learning”, their approach actually deals with the hierarchies where

only one label is assigned to a data point under an active parent

label. In contrast, our case assumes that a data point can be assigned

multiple active labels under one active parent label.

Our proposal follows the conventional technical path for CL

to focus on the relationships between data samples, rather than

the relationships between labels and samples [34, 43], taking the

hierarchical information into account. Also, our proposed HMCL

occurs during the pretraining phase, prior to training HMCN. It is

3Honor of Kings and Kingdom Rush are mobile games but with significantly different

play styles; IQiYi and Tencent Video are two online video apps; Shopee and Taobao
are two online shopping apps.

Text-Based Hierarchical Multilabel Classification for Mobile Applications KDD ’25, August 3–7, 2025, Toronto, ON, Canada

decoupled from the classification model training and can be used

with other classification models.

3 Model and Implementations

We begin by introducing the necessary notation. Next, we present

our data encoding strategy, followed by a detailed discussion of

the HMCN architecture and HMCL. The overall architecture is

illustrated in Fig. 3.

3.1 Notation

Using Fig. 1 as a motivating example, we first define a hierarchy 𝐻

using the notation of directed graph such that 𝐻 = (𝑉 , 𝐸), where𝑉
is the label set and 𝐸 denotes the set of parent-to-child relationships.

Precisely, for a set of𝑚 ordered labels, 𝑉 = {𝑣1, . . . , 𝑣𝑚} and 𝐸 =

{(𝑢, 𝑣) : 𝑢 = 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣),∀𝑢, 𝑣 ∈ 𝑉 }. This clarifies the top-down

paths. In our task, one parent label can have multiple children while

one child label can have only one parent. We denote the dataset

by D = {X,Y} where X = {𝑥1, . . . , 𝑥𝑛} represents the features

and Y = {y1, . . . , y𝑛} are the assigned labels to the observations.

Considering any index 𝑖 , y𝑖 ∈ {0, 1}𝑚 where 1 indicates that the

corresponding label has been assigned to 𝑥𝑖 while 0 refers to the

opposite. Moreover, we denote the assignment of label 𝑣 for 𝑥𝑖 by

𝑦𝑖𝑣 . We emphasize that there could possibly be multiple 1s or all 0s

in any given y. A label 𝑣 for any 𝑥 cannot be 1 once its parent label

𝑢 for this 𝑥 is 0. Finally, let us write that 𝑥𝑖 has an active label 𝑣 if

𝑦𝑖𝑣 = 1, while 𝑥𝑖 has an inactive label 𝑣 if 𝑦𝑖𝑣 = 0.

3.2 Data Encoding

In our scenario, apps are represented by the text data from the

App Store. We utilize three fields to construct the app embedding:

app name, description, and editorial comments. It follows that we

could feed all the information into a text encoder, where we apply

RoFormer, to transform the information to embeddings. However,

concatenating all fields could lead to prohibitively long input text

that the encoder has to truncate, resulting in potential information

loss. Also, certain fields might be empty due to practical reasons,

and their importance should be down-weighted.

To address the above issue, we set a special token to each field

with a similar usage of [CLS] in the BERT models [9]. This token

will be inserted in front of each field and the fields will be indepen-

dent inputs passed to the encoder. We extract the embedding for the

corresponding token from the three fields and merge them into a 2D

embedding. In particular, we set the tokens [N] for app name, [D]
for description, and [C] for editorial comments, respectively. We

input the app name as a sentence 𝑥𝑁 into RoFormer and obtain the

2D embeddings𝐻𝑁 ∈ R𝑠×𝑑 where 𝑠 is the length of sequence (with-

out pooling). As the special token [N] is engineered to always stay

in position 0, we can extract an 1D embedding h𝑁 ∈ R𝑑 by fetching

the first row from𝐻𝑁 , such that h𝑁 = 𝐻𝑁 [0] = RoFormer(𝑥𝑁) [0].
Similarly, we achieve the embedding h𝑁 , h𝐷 , h𝐶 for app name, de-

scription, and editorial comments respectively by

h𝑁 = 𝐻𝑁 [0]; h𝐷 = 𝐻𝐷 [0]; h𝐶 = 𝐻𝐶 [0] . (1)

We further obtain the embedding h∗ for 𝑥 by

h∗ = CONCAT([h𝑁 , h𝐷 , h𝐶]; 𝑑𝑖𝑚 = 0) ∈ R3×𝑑 (2)

where CONCAT(·) concatenates the inputs along the 𝑥-axis when

𝑑𝑖𝑚 = 0; otherwise, it concatenates them along the 𝑦-axis when

𝑑𝑖𝑚 = 1. This formula can then be extended to cases with additional

fields. To focus on the most important features, we apply a self-

attention to acquire the embedding at the root level, h0, by

h0 = Encoder(𝑥) = MultiHeadAttn(h∗, h∗, h∗) (3)

where MultiHeadAttn(·, ·, ·) refers to the multihead attention [31].

The three arguments correspond to the query, key, and value in the

attention mechanism. When all three arguments are the same, it

becomes a self-attention computation.

3.3 Hierarchical Multilabel Classification

Network

We follow the well-known work [35] to split our classification

model into two classification manners, namely the global and local

manners. In the global manner, the constraints of hierarchical mul-

tilabel classification are ignored, and all labels are treated equally

as in a simple multilabel classification. The local manner maintains

different embeddings for predicting the label assignments at differ-

ent levels of the hierarchy. More importantly, the information of the

embedding at a higher level (closer to the root node) will be passed

on to the embedding at the current level. This design ensures that

the information of the hierarchy can be utilized. Finally, these two

types of predictions are merged to produce the final predictions.

To alleviate the violation of label assignment (i.e., a data point

with label 𝑣 is assigned a value of 1 while its parent𝑢 for that data is

assigned 0), a path regularization term is added to the loss function.

3.3.1 Local Manner. Let z represent the likelihoods of y where a

single element 𝑧𝑣 = 𝑝 (𝑦𝑣 = 1|𝑥). In this manner, the model outputs

the estimated likelihoods of the label assignment {ẑ(1) , . . . , ẑ(𝐿) },
level by level, where ẑ(ℓ) denotes the likelihoods of the predictions
at level ℓ . Hence, in this local manner, we generate the likelihood

estimates ẑ𝑙𝑜𝑐𝑎𝑙 for 𝑥 by concatenating the local likelihoods:

ẑ𝑙𝑜𝑐𝑎𝑙 = CONCAT([ẑ(1) , . . . , ẑ(𝐿)]; 𝑑𝑖𝑚 = 1) . (4)

We now describe generation of local predictions at non-root

levels. For any non-root level ℓ , the embedding hℓ−1 from the last

level is gathered to construct the embedding hℓ along with the meta

embedding. We thus achieve the local embedding by

hℓ =

{
MLP(h0) ℓ = 1

MultiHeadAttn (h0, hℓ−1, hℓ−1) ℓ = 2, . . . , 𝐿
. (5)

The MLP at the first level can be regarded as a learnable “prior”

for the encoded embedding h0 and can be thought of as certain

information from the root. For other levels, we acquire the local

embedding through cross-attention at the subsequent levels. We

replace the concatenation method used in literature [35] to merge

the embeddings by cross-attentions. This approach can identify

significant features within local embeddings in relation to their

parent embeddings, during the information transfer. In effect, we

found that the empirical performance of using multihead cross-

attentions and concatenations for information passing is extremely

close when testing on our app data. However, the attention-based

approach avoids generating prohibitively long embeddings that

may cause memory overflow.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jiawei Guo, Yang Xiao, Weipeng Huang, and Guangyuan Piao

Name embedding

Sigmoid

Sigmoid

Prediction Layer

MLP

: CONCAT

: Global manner

: Local manner
Description

 Editorial
comments

final prediction

global predictionprediction
 at level 1

prediction
 at level 2

closer

farther

prediction
 at level 3

Multi-Head
Attention

Multi-Head
Attention

local prediction

RoFormer

Sigmoid

Prediction Layer

Sigmoid

Sigmoid

MLP

Multi-Head
Attention

Anchor Emb

Negative Emb

Optimized
 RoFormer

Positive Emb

optimize

Anchor Sample

Negative Sample

Positive Sample

sampling
strategy

contrastive
 samples

HMCL

Data Encoding

HMCN

Prediction Layer

Prediction Layer

Prediction Layer

MLP

Figure 3: The HMCL + HMCN architecture. In HMCN, the left dotted block refers to the local manner, and the right dotted block

refers to global one. The Prediction Layer refers to the last MLP layer for prediction, and +○ indicates a CONCAT operation.

Provided the local embedding, the local prediction is then

ẑ(ℓ) = Sigmoid(MLPℓ (hℓ)), ∀ℓ = 1, . . . , 𝐿 (6)

where the Sigmoid layer is widely adopted as the multilabel classi-

fication layer. Furthermore, the MLPs for computing the prediction

logits also have to be localized for better fitting capacity. Following

that we can construct the local embedding ẑ𝑙 using Eq. (4).

3.3.2 Global Manner. The global manner is straightforward to

implement. Let MLP𝑔 denote the global MLP. We obtain the global

prediction ẑ𝑔𝑙𝑜𝑏𝑎𝑙 by

ẑ𝑔𝑙𝑜𝑏𝑎𝑙 = Sigmoid(MLP𝑔 (h0)) . (7)

3.3.3 Prediction Integration. One may merge the local and global

predictions using a weighted mixture. In our task, the two predic-

tions are combined through an MLP, i.e.,

ẑ = MLP(CONCAT([ẑ𝑙𝑜𝑐𝑎𝑙 , ẑ𝑔𝑙𝑜𝑏𝑎𝑙])) (8)

based on Eqs. (4) and (7). This approach can also be regarded as a

strategy for acquiring the ensemble of the two predictions.

3.3.4 Path Regularization. To mitigate the problem of path viola-

tion, we penalize the cases that 𝑝 (𝑦𝑣 = 1|𝑥) > 𝑝 (𝑦𝑢 = 1|𝑥) where 𝑢
is the parent label of 𝑣 , for any single 𝑥 . Given any data point, the

likelihood of assigning a value of 1 to the parent label should be

at least as high as the likelihood of assigning 1 to any of its child

labels. We adopt a simple hinge loss to define the regularization

term 𝑅 as

𝑅(𝑥) =
∑︁

𝑢,𝑣∈𝑉
1{𝑢 = 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣)}max(0, 𝑧𝑣 − 𝑧𝑢) , (9)

such that the sub-term 𝑧𝑣 − 𝑧𝑢 can only contribute to the gradient

computations when 𝑧𝑣 > 𝑧𝑢 , i.e., 𝑝 (𝑦𝑣 = 1|𝑥) > 𝑝 (𝑦𝑢 = 1|𝑥). In
such a case, the sub-term will be minimized.

3.3.5 Optimization. We are now able to detail the optimization

implementations. We select the focal loss (FL) [21] as the main loss

function, such that

FL(ẑ, y) =
∑︁
𝑣∈𝑉
−𝛼

[
𝑦𝑣 (1 − 𝑧𝑣)𝛾 log 𝑧𝑣 + (1 − 𝑦𝑣)𝑧𝛾𝑣 log(1 − 𝑧𝑣)

]

where 𝛼 and 𝛾 provide greater flexibility in handling minority la-

bels
4
, through assigning greater weights to the data points that are

hard to learn. Hence, the final loss function is

L =
∑︁

(𝑥,y) ∈D
FL(ẑ, y) + 𝜆𝑅(𝑥) (10)

given 𝜆 a coefficient for weighting the regularization term. When

the value of 𝜆 is relatively small, the model tends to learn violated

paths that favor the statistical characteristics of data over the hier-

archical structure [35]. Conversely, with a relatively large value of

𝜆, the model tends to assign smaller probabilities to deeper labels,

which might affect the convergence process.

4 Hierarchical Multilabel Contrastive Learning

The HMCL process is applied prior to training the classification

model HMCN to obtain the pretrained starting point. A good start-

ing point of themodel weights could benefit the subsequent training

tasks and help to learn a more generalized model [10]. One key

component to training a successful pretrained model in contrastive

learning is constructing effective positive and negative sample pairs

Even though constructing positive and negative sample pairs in

multiclass classifications is considered straightforward, the task

becomes far more challenging in the multilabel classification sce-

narios [7, 32, 39], in particular when hierarchical structures are

imposed as constraints [40]. In this work, we propose three nega-

tive sampling strategies: All, Level, and Sibling, which will later

be examined in Section 5.2. In the following discussion, we will

detail each of them.

The priority of HMCL lies in the sampling strategy rather than

the conventional contrastive learning loss function design. The pos-

itive sampling procedure is consistent, while the choice of negative

sampling strategies will be the key aspect to our empirical success.

Clearly, a pair (𝑥, 𝑥 ′) can be a negative pair even if they shared

certain labels (but the labels for them are not identical). They are

probably more often regarded as a positive pair if they have more

shared labels. Meanwhile, they could still be a negative pair as long

as they have a difference in the label assignment. With random-

ness, the sampling approach is equivalent to imposing weights that

4
Minority labels refer to the labels that contain only aminor collection of data instances.

Text-Based Hierarchical Multilabel Classification for Mobile Applications KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Algorithm 1: Sampling positive instances for 𝑥𝑖 at level ℓ

1 Initialize X+
𝑖ℓ
← ∅;

2 for each anchor label 𝑣 in 𝑉 +
𝑖ℓ
do

3 Sample 𝑥 uniformly from X𝑣 and add it to the set X+
𝑖ℓ

4 return X𝑖ℓ

Algorithm 2: Negative sampling for 𝑥𝑖 at level ℓ

1 Initialize X−
𝑖ℓ
← ∅ ;

2 for each anchor label 𝑣 in 𝑉 +
𝑖ℓ
do

3 Sample a negative label 𝑢 from 𝑉¬𝑣 ;
4 Sample an instance 𝑥 which has active 𝑢 but inactive 𝑣 ;

5 Add 𝑥 to X−
𝑖ℓ
;

6 return X−
𝑖ℓ

reflect the degree of label overlap in contrastive pairs, taking into

account their hierarchical relationships.

4.1 Positive Sampling

We adopt the approach of [40], sampling contrastive data points

level by level. Following this principle, the sampling process for

each data point at a given level is performed in a label-wise manner.

Let 𝑉 +
𝑖ℓ
denote the positive label set for 𝑥𝑖 , which contains the

active labels for 𝑥𝑖 at the ℓ-th level. Conversely, let 𝑉 −
𝑖ℓ

denote the

corresponding negative label set, containing all the inactive labels

for 𝑥𝑖 at level ℓ . While it constructs the label sets given one datum

𝑥 , we also construct sub-sample sets given on every label. We thus

denote the set of sub-samples whose label assignment of label 𝑣 is

active by X𝑣 . Now, let X+𝑖ℓ be the positive sample set for 𝑥𝑖 at level

ℓ . We sample one single instance from every positive label of 𝑥𝑖 , as

shown in Algorithm 1.

4.2 Negative Sampling Strategies

Our solutions focus on constructing effective negative label level-

wise that propagate to the samples associated with these labels. The

pair construction process is generally decomposed for each data

point and executed level by level. At each level, negative sampling

is performed label by label. For a given label 𝑣 , referred to as the

anchor label in this context, negative labels are sampled relative

to 𝑣 . Assuming that 𝑣 is at level ℓ , we focus on constructing the

following two sets:

(1) 𝑉¬𝑣 the negative sample set of the anchor label 𝑣 ;

(2) X−
𝑖ℓ
the subset of negative samples of 𝑥𝑖 at the ℓ-th level.

Algorithm 2 depicts the procedure of this strategy. For each data

point 𝑥𝑖 , we sample negative samples at every level of the hierarchy.

However, a single data point may have multiple active labels at any

given level. Thus, the algorithm iterates through each active label,

treating it as an anchor label 𝑣 . For each anchor label 𝑣 , we construct

the corresponding negative label set 𝑉¬𝑣 for 𝑣 . Specifically, with
respect to the anchor label 𝑣 , the process involves two key steps: 1)

sampling a negative label from 𝑉¬𝑣 , and 2) sampling an instance

associated with this negative label. Crucially, the sampled instance

must not have the anchor label 𝑣 active, ensuring that the negative

sample is distinct and meaningful in the context of CL. Finally, we

construct the level-wise negative sample sets {X𝑖1, . . . ,X𝑖𝐿}, which
are instrumental in computing the final contrastive loss. Instead of

sampling directly from the entire negative sub-space, sampling the

negative labels in the first place ensures that the minority labels

can be equally treated and involved in the contrastive learning.

The nature of sampling strategy is to determine the negative

sample set that constrains the sampling space, which is in particular

directed by 𝑉¬𝑣 . Consequently, the methodology used to construct

𝑉¬𝑣 directly shapes the resulting negative sampling strategy. Next,

we explore and analyze three distinct negative sampling strategies:

All, Level, and Sibling.

4.2.1 Negative Sampling Strategy: All. To explain this scenario,

let us first fix the anchor label for 𝑥𝑖 to 𝑣 . In the All strategy, and

the negative label set 𝑉¬𝑣 is constructed to include all labels across

all levels, excluding the ancestors and successors of 𝑣 . This implies

that labels at higher or lower levels in the hierarchy, relative to 𝑣 ,

are also eligible to be sampled as negative labels for 𝑣 . To illustrate

the process, we consider the example where the anchor label is set

to “Game”. In this case, the negative labels must exclude “Game”

itself, as well as all its ancestors and successors (e.g., “Game-Moba”,

“Game-Strategy”, etc.). This strategy promotes broad contrastive

comparisons by drawing negative samples from a wide range of

labels. Unfortunately, it turns out that this strategy disregards the

hierarchical structure of the labels.

Furthermore, this approach is prone to sampling more negative

labels from the lower levels of the hierarchy, as the number of labels

grows exponentially when it comes closer to the leaf nodes. As a

result, the negative data samples may be biased towards instances

associated with labels that have a large number of leaf descendants,

which diminishes the effectiveness of the contrastive comparisons.

4.2.2 Negative Sampling Strategy: Level. This strategy improves

All to enhance the negative sample comparison by focusing the

negative sample set that stays in the same level of that for the

anchor label. Assume an anchor label for 𝑥𝑖 at level ℓ is 𝑣 . Let 𝑉
(ℓ)

denote the set of labels at the level ℓ of the hierarchy. The negative

set 𝑉¬𝑢 is actually the set of labels at the same level except 𝑣 itself:

𝑉¬𝑣 = 𝑉 (ℓ) \ {𝑣}. The construction of 𝑉¬𝑣 leverages hierarchical
structure by restricting negative samples to active labels at the same

level as the anchor label 𝑣 , explicitly excluding 𝑣 itself. Consequently,

the labels that are ancestors or successors of 𝑣 in the hierarchy are

inherently eliminated from the negative label pool. Hence, this

strategy can avoid the situation in All strategy, where negative

label samples are biased toward those with active labels at lower

levels. Given any anchor label of 𝑥 , we can limit the selection of

negative samples to those at the same level, thereby constructing

more balanced negative samples given every active label of 𝑥 .

4.2.3 Negative Sampling Strategy: Sibling. This approach is in-

spired by [40]. The negative sample space for the anchor label 𝑣 is

restricted to its siblings for each level. Precisely, we have 𝑉¬𝑣 to
be all the siblings of 𝑣 . The siblings of 𝑢 have already excluded 𝑢

by definition. In summary, the Sibling strategy attempts to better

distinguish the data points with respect to the labels sharing the

same parent node. The downside is that it restricts data comparison

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jiawei Guo, Yang Xiao, Weipeng Huang, and Guangyuan Piao

Table 1: Comparison of contrastive labels generated by three negative sampling strategies, using the label hierarchy in Fig. 1

for an example data point with labels {“Finance”, “Finance-Investment”}.

Level Anchor label Strategy Contrastive Label Set

First Finance

All {Video, Game, Game-Moba, Game-RPG, Game-Strategy}

Level {Video, Game}

Sibling {Video, Game}

Second Finance-Investment

All {Finance, Finance-Loan, Finance-Loan-Credit Loan, Finance-Loan-Mortgage

Loan, Video, Game, Game-Moba, Game-RPG, Game-Strategy}

Level {Finance-Loan, Game-Moba, Game-RPG, Game-Strategy}

Sibling {Finance-Loan}

to non-overlapping negative samples, potentially missing out on

certain significant comparisons.

4.2.4 Comparison of the Negative Sampling Strategies. The main

distinction between the three strategies is the scope of sampling

negative samples based on anchor labels, which further determines

different optimization directions. Noteworthy, for each anchor sam-

ple, our approach constructs effective negative labels for every

level, propagating to the samples that contain these labels. We aim

to largely avoid cases where negative labels are concentrated in

certain labels, as this could hinder the generation of more balanced

contrastive samples. At a higher level, the All strategy samples

negative labels from all levels, the Level strategy samples from the

current level of the anchor label, and the Sibling strategy samples

only from the sibling node labels at the anchor label’s current level.

The All strategy is prone to sampling anchor labels from the lower

levels, which slightly diverges from our goal.

Imagine that we would like to sample negative peers for an

app with labels {“Finance”, “Finance-Investment”}. Using the hier-

archy in Fig. 1 as an example, we illustrate the possible sampling

results from different negative sampling strategies (see Table 1).

First, we sample the negative labels from the first level. Let the

anchor label at the first level be “Finance”. When using the All

strategy to select the negative label, our contrastive set is {“Video”,

“Game”, “Game-Moba”, “Game-RPG”, “Game-Strategy”}. We exclude

“Finance-Loan”, “Finance-Investment”, “Finance-Loan-Credit Loan”,

“Finance-Loan-Mortgage Loan” because their first-level labels are

also “Finance”. In other words, they are all the descendant nodes

of the anchor label “Finance”. Notably, samples from “Game” or

“Game-XX” share the same first-level label, “Game”. Consequently,

the probability of sampling the “Game” label at the first level is four

times higher than that of sampling “Video”, which introduces bias

into the optimization process. The Level and Sibling strategies

address this issue. The Level strategy returns {“Video”, “Game”} as

the set of contrastive labels, since these two labels are both first-

level labels. In the case of the Sibling strategy, the contrastive label

set is also {“Video”, “Game”} due to the fact that they share the same

parent label “Root”.

We then sample the negative labels from the second level. Let

the anchor label at the second level be “Finance-Investment” for our

discussion. When using the All strategy, since the label “Finance-

Investment” has no descendant nodes, the set of contrastive labels is

{“Finance”, “Finance-Loan”, “Finance-Loan-Credit Loan”, “Finance-

Loan-Mortgage Loan”, “Video”, “Game”, “Game-Moba”, “Game-

RPG”, “Game-Strategy”}. In the case of the Level strategy, the set of

contrastive labels is {“Finance-Loan”, “Game-Moba”, “Game-RPG”,

“Game-Strategy”}, since these labels are all second-level labels. Fi-

nally, when using the Sibling strategy, the set of contrastive la-

bels contains only one element “Finance-Loan”, because the label

“Finance-Investment” has only one sibling node. The Level strategy

empirically outperforms the Sibling strategy since it contrasts each

anchor label with a broader distribution of negative sample labels

at each level, thereby enhancing the discriminative capabilities.

4.3 Contrastive Loss

Let Proj(𝑥) denote a neural network that employs our encoder to

transform input 𝑥 into h and a non-linear layer that projects the

embedding h into a subspace, as outlined in the practitioner’s guide

in [5, 13, 15]. For simplicity, we write s = Proj(𝑥). We emphasize

that a normalization layer is always appended to the end of the

network, allowing us to perform easy cosine similarity computa-

tions. Most losses in contrastive learning are built on the Softmax

function. For instance, the InfoNCE [25], a typical loss and a root

for many variants, approximates the probability of correctly iden-

tifying the positive sample pairs via a Softmax function over the

similarities between the positive and negative pairs.

However, our scenario is evidently more complex when defin-

ing the positive and negative pairs, since there are multiple levels

for determining if a sample pair is positive or negative. What is

even more challenging is that the same pair can be regarded as

both cases under different anchor labels. Employing Softmax to

model the probabilities of identifying the positive pairs may lead

to a cumbersome loss formula and may demand a difficult code

implementation. We therefore propose a more elegant solution,

which was found to perform empirically in our task. Let us denote

by Pr(𝑥, 𝑥+) and Pr(𝑥, 𝑥−) the probabilities of a positive pair (𝑥, 𝑥+)
and of a negative pair (𝑥, 𝑥−), respectively. Inspired by multilabel

classification, where labels are represented as binary vectors and

binary cross-entropy is used as the loss function, we obtain

Pr(𝑥, 𝑥+) = Sigmoid(s⊤s+/𝛼); (11)

Pr(𝑥, 𝑥−) = 1 − Sigmoid(s⊤s−/𝛼) (12)

Text-Based Hierarchical Multilabel Classification for Mobile Applications KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Table 2: The statistics of datasets.

Dataset Level Label Training Validation Test

app 3 177 30,628 3,798 14,286

RCV1 4 103 20,833 2,316 781,265

WOS 2 141 30,070 7,518 9,397

given 𝛼 the scaling factor of the input value for Sigmoid. Recall

that X+
𝑖ℓ
and X−

𝑖ℓ
are respectively the positive and negative sample

set for 𝑥𝑖 at level ℓ of the label hierarchy, generated through the

sampling strategies. Assuming that 𝐼 (B) returns the indices of data
in the batch B, the batch-wise contrastive loss L𝑐𝑙 (B) is

L𝑐𝑙 (B) =
1

|B|𝐿
∑︁

𝑖∈𝐼 (B)

𝐿∑︁
ℓ=1

1��𝑉 +
𝑖ℓ

��
(∑︁
𝑥+∈X+

𝑖ℓ

log Pr(𝑥𝑖 , 𝑥+)

+
∑︁

𝑥−∈X−
𝑖ℓ

log Pr(𝑥𝑖 , 𝑥−)
)
. (13)

With this loss, one can effectively pretrain the classification model.

5 Experiments

In this section, we first present the experimental setup. Subse-

quently, we compare the three HMCL negative sampling strategies,

and discuss the experimental findings. Finally, we discuss the de-

ployment of the HMCN in combination with the HMCL and its

impact on a realworld downstream task.

5.1 Experimental Settings

Our primary task was to train amodel using the app data
5
. However,

to examine the generalization ability of our approach, we also

conducted experiments on two public datasets: the RCV1 dataset

[20] and the WOS dataset [19]. The RCV1 data contains titles and

abstracts (main text). It is worth noting that WOS is a hierarchical

multiclass dataset; thus, there exists only one field of text in the

data. We followed the strategy in [42] to split both datasets. The

statistics of the datasets are summarized in Table 2.

Following a general practice [1, 42, 43], we adopted micro-F1

and macro-F1 as evaluation metrics. The micro-F1 computes the

F1 score over the entire dataset whereas the macro-F1 is the inter-

class average F1 score. We compared our work with the following

models on the RCV1 and WOS datasets: HiAGM [42], HTCInfo-

Max [8], and HiMatch [4]: These models applied a structural en-

coder to encode hierarchical labels and enhance model performance

by matching the semantic similarity between label vectors and text

vectors. HILL [43] and HGCLR [34] are two approaches that em-

ploy contrastive learning to augment the representation capabilities

of the base text encoders. Due to the limit of space, we leave our

implementation details in the Appendix.

5.2 Comparing the Negative Sampling Strategies

In this section, we compare the negative sampling strategies for

the HMCL: All, Level, and Sibling. Table 3 illustrates the com-

parison of the three strategies on the test sets of the app and the

5
Part of the public data examples can be found in the Tencent App Store

Table 3: Comparison of the negative sampling strategies.

RCV1 app

Micro-F1 Macro-F1 Micro-F1 Macro-F1

HMCN 87.52 ± 0.18 70.39 ± 0.10 79.67 ± 0.16 47.79 ± 0.19
All 87.13 ± 0.36 71.14 ± 0.34 80.16 ± 0.67 48.02 ± 1.19
Level 87.92 ± 0.08 71.36 ± 0.40 80.75 ± 0.05 48.62 ± 0.39
Sibling 87.67 ± 0.04 70.52 ± 0.34 80.34 ± 0.33 48.32 ± 0.75

RCV1 datasets, first presenting the performance of a single HMCN,

followed by the performance of the HMCN with HMCL based on

each sampling strategy. Overall, all three strategies outperform

the independent HMCN significantly. This indicates that HMCL

enhances the HMCN performance, regardless of which negative

sampling strategy is used. Of the three negative sampling strategies,

Level achieves the best performance, followed by Sibling and All.

Although the All strategy is a close performer to the best-

performing Level strategy in terms of macro-F1 on the RCV1

dataset, Level consistently outperforms it across all results. This

coincides with our analysis in Section 4.1 that the contrastive com-

parisons in Level are more effective than that in All. In Level,

the selected negative labels for sampling are less biased toward

leaf nodes, increasing the chances of picking samples associated

exclusively with non-leaf labels. It enriches the diversity in the con-

trastive comparisons. The restrictions on constructing the negative

samples in Level is the most balanced. The Sibling strategy out-

performs All on all metrics except macro-F1 on the RCV1 dataset.

Compared with the app dataset, which has evenly distributed labels,

RCV1 exhibits a more imbalanced label distribution. We observe

that Sibling underperforms on under-represented labels in com-

parison to All, consequently leading to a lower macro-F1 score.

Given the superior performance compared to All and Sibling, in

the rest of the experiments, we only report the results using the

Level strategy. That is, HMCL will be limited to “HMCL with the

Level strategy” unless otherwise noted.

5.3 Results for the App Data

We implemented the BERT and RoFormer model using a global

multilabel classification approach. The two best performing state-

of-the-art (SOTA) approaches on the two public datasets, HILL

and HGCLR, were also implemented for comparison. BERT was

retained in the implementations, since the HGCLR and HILL are

tightly integrated with it.

Table 4 shows the results for the app data. First, we observe

that the BERT and RoFormer solutions obtain a close performance

despite that RoFormer is better at the micro-F1. The RoFormer-

based HMCN demonstrates a significant improvement on both

metrics. This could be attributed to the local manner of handling

classification, and the information transferred from the previous

level is helpful. In addition, we observe that the HGCLR and HILL

achieve a close performance. They both outperformed the HMCN

with respect to the micro-F1, and HILL outperforms the HMCN

in regard to macro-F1. However, the HMCL enables the HMCN to

outperform them on both metrics, making our final approach the

best-performing one for the data. This indicates that, the improved

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jiawei Guo, Yang Xiao, Weipeng Huang, and Guangyuan Piao

quality of app embeddings obtained via HMCL can effectively en-

hance the performance of HMCN. A detailed analysis of the app

embedding quality with and without HMCL regarding uniformity

and alignment [33] can be found in Appendix B.

5.4 Results for the Public Data

We report our test set results for the public datasets in Table 5. As

the HGCLR and HILL employ only the field of abstract, we con-

catenated the title to the abstract when training these two models.

The results of using this modification for these two models both

show improvements in the two metrics. For our own models, the

means and standard deviations are presented. On the RCV1 dataset,

the HMCN with HMCL outperforms all the SOTA solutions. In-

terestingly, the performance of the single HMCN (with BERT as

the base text encoder) is close to that of the SOTA approaches. As

expected, the HMCL is able to lift the HMCN to achieve increases

in both metrics. The results imply that the HMCL effectively helps

the instances with active minority labels gain better recognition

regarding their representations.

The HILL performs the best for the WOS dataset. We notice that

the WOS dataset contains only one field, namely the main text,

whereas the RCV1 dataset contains article titles and main text, and

the app data contains more fields. With only one field in the data,

the HMCN might not be able to exploit its full potential since it is

designed to cope with data containing multiple fields. Also, WOS

is a hierarchical multiclass dataset which might further hinder the

HMCN from performing, as the HMCN is designed for a mutlilabel
scenario. In particular, the cross-attention for information transfer

between levels might be less effective when using only one field.

However, it shows that the HMCL is consistently capable of enhanc-

ing the performance of the HMCN. This also evidently supports

the effectiveness of our contrastive learning procedures.

5.5 Deployment and Impact

5.5.1 App classification. As illustrated in illustrated in Fig. 4, we

first gather all the app information from the App Store, including

the app name, description, editorial comments, etc. Next, we sample

a subset of apps to train and evaluate the model. This subset will

go through several iterations of human labeling to ensure that

the resulting ground truth labels are of high quality for training.

After training, the model is deployed to infer labels for all apps.

To account for new and obsolete apps in the App Store, we repeat

the inference process monthly to update the labels for all apps.

Moreover, we regularly fine-tune HMCN with newly labeled data

Table 4: Empirical results on the app dataset.

Micro-F1 Macro-F1

BERT 78.28 ± 0.06 46.59 ± 0.15
RoFormer 79.19 ± 0.09 46.57 ± 0.81
HGCLR 80.62 47.78

HILL 80.33 47.92

HMCN 79.67 ± 0.16 47.79 ± 0.19
HMCN & HMCL 80.75 ± 0.05 48.62 ± 0.39

Table 5: Experimental results on the public datasets.

RCV1 WOS

Micro-F1 Macro-F1 Micro-F1 Macro-F1

BERT 86.26 67.35 86.26 80.58

HiAGM* 85.58 67.93 86.04 80.19

HTCInfoMax* 85.53 67.09 86.30 79.97

HiMatch* 86.33 68.66 86.70 81.06

HGCLR* 86.49 68.31 87.11 81.20

HILL* 87.31 70.12 87.28 81.77

HGCLR (title & abstract) 87.22 69.89 - -

HILL (title & abstract) 87.70 70.96 - -

HMCN 87.52 ± 0.18 70.39 ± 0.10 86.45 ± 0.08 80.91 ± 0.30
HMCN & HMCL 87.92 ± 0.08 71.36 ± 0.40 86.90 ± 0.15 81.07 ± 0.13
1
The results for methods marked with * were collected directly from the paper for HILL [43].

app classification task

HMCN & HMCL

serving

downstream task

app labels as
user interest features for
user risk assessment

HMCN & HMCL

training

sampling

& labeling

app

data

user app

downloads

Figure 4: The deployment of the HMCN and HMCL, and the

role of its app classifications in the downstream task of user

risk assessment. The app labels assigned by the HMCN are

used to extract user interests from the app download history

of users, which are then merged with additional features for

training and inference of the risk assessment model.

to enhance the model. Given the hyperparameters discussed in the

Appendix, the training process of the HMCL and HMCN would

respectively take around 52 hours and 3 hours to complete. These

inferred labels serve as important features that are input into the

downstream task.

5.5.2 Downstream task. We focus our discussion on a particular

downstream task where the business objective is to assess the risk

of users becoming victims of telecommunications fraud. Telecom-

munications fraud refers to the criminal act of defrauding victims

into providing confidential information by using false informa-

tion or disguised identities through communication means such

as telephone, text messages, and the internet. The purpose of this

downstream task is to identify in advance the risk of users po-

tentially becoming victims based on user characteristics and to

remind relevant organizations to take protective measures. The

downstream business placeholder could incorporate our classifi-

cation results to enhance their modeling on user interests. These

user interest features are then merged with other features to train

a dedicated machine learning model for assessing user risk.

To deploy our features online for the downstream task, a dedi-

cated test dataset was prepared and held exclusively by the down-

stream business team. Features that can improve their evaluation

metric beyond a certain threshold on this dataset were approved

for integration into their online deployment. Once deployed, the

Text-Based Hierarchical Multilabel Classification for Mobile Applications KDD ’25, August 3–7, 2025, Toronto, ON, Canada

marginal feature contribution would no longer be measured. The

positive-to-negative sample ratio was around 1:10, with positive

samples referring to the users that could encounter fraud.

Concretely, the effectiveness of user interest features is evalu-

ated using the KS value of the downstream credit risk management

model. The KS value is computed as follows. The downstreammodel

predicts on their user data and generates the scores of these samples

being positive. We define the cumulative distribution for identi-

fying the positive and negative samples by CDF𝑝 (𝑡) and CDF𝑛 (𝑡)
respectively, where 𝑡 is the threshold value and

CDF𝑝 (𝑡) =
No. of positive samples given score < 𝑡

No. of positive samples

(14)

CDF𝑛 (𝑡) =
No. of negative samples given score < 𝑡

No. of negative samples

. (15)

The KS value measures the largest separation between the two

CDFs, such that

KS = max𝑡

��
CDF𝑝 (𝑡) − CDF𝑛 (𝑡)

�� . (16)

The higher KS indicates better separation between the two distribu-

tions. The business team processed the scores by first sorting them

and then dividing them into 11 bins. The threshold values for each

bin were defined by their upper bounds, excluding the first bin. The

metric is used to measure a model’s ability to distinguish between

positive and negative samples, particularly suited for binary classi-

fication problems. It assesses the model’s discriminative power by

comparing the maximum difference between the cumulative distri-

bution functions of positive and negative samples [22]. Integrating

our app classification results leads to an improvement of 10.7%with

respect to the KS value on the test set. It implies that the model can

be more accurate (+10.7%) in identifying users who might probably

become victims, enabling relevant organizations to take preventive

measures in advance. As a result, app labels classified using HMCN

and HMCL have been successfully deployed online and integrated

into the feature set used by the downstream task. The deployment

has been in place for over one year.

6 Conclusion

In this paper, we proposed a systematic design for hierarchical

multilabel classification of app labels on the Tencent App Store.

Our approach adapts the HMCN to accommodate the multi-field,

text-based description of apps. Additionally, we introduced the

HMCL for pretraining the text encoder, discussed three negative

sampling strategies, and examined the effectiveness of leveraging

contrastive learning. With high-quality hierarchical multilabel clas-

sification results that are generated by the HMCN with HMCL,

downstream business applications such as user risk assessment can

identify the categories of focus and the extent of exploration, which

in turn can improve their key performance metrics. Both offline

experiments and the 10.70% performance boost in the downstream

task demonstrate the efficacy of the HMCN with the text encoder

pretrained through the HMCL. Since the textual information such

as app names, descriptions, and editorial comments is generally

available in other app stores, we believe our approach can be ap-

plied to many other app stores as well. For future work, additional

downstream business applications will be explored to leverage the

hierarchical multi-labels of apps.

Acknowledgments

We are grateful to the anonymous reviewers for the extremely

constructive feedback, which has helped significantly improve this

paper.

This project was initiated when Weipeng Huang was with Ten-

cent. Weipeng Huang has been partly supported by Doctoral Re-

search Initiation Program of Shenzhen Institute of Information

Technology (Grant SZIIT2024KJ001) and Guangdong Research Cen-

ter for Intelligent Computing and Systems (Grant PT2024C001).

References

[1] Rami Aly, Steffen Remus, and Chris Biemann. 2019. Hierarchical multi-label

classification of text with capsule networks. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics: Student Research Work-
shop. 323–330.

[2] Siddhartha Banerjee, Cem Akkaya, Francisco Perez-Sorrosal, and Kostas Tsiout-

siouliklis. 2019. Hierarchical transfer learning for multi-label text classification.

In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. 6295–6300.

[3] Ali Cevahir and Koji Murakami. 2016. Large-scale Multi-class and Hierarchical

Product Categorization for an E-commerce Giant. In Proceedings of COLING 2016,
the 26th International Conference on Computational Linguistics: Technical Papers.
525–535.

[4] Haibin Chen, Qianli Ma, Zhenxi Lin, and Jiangyue Yan. 2021. Hierarchy-aware la-

bel semantics matching network for hierarchical text classification. In Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers). 4370–4379.

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A

simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning. PMLR, 1597–1607.

[6] Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005. Learning a similarity metric

discriminatively, with application to face verification. In 2005 IEEE computer
society conference on computer vision and pattern recognition (CVPR’05), Vol. 1.
IEEE, 539–546.

[7] Son D Dao, Ethan Zhao, Dinh Phung, and Jianfei Cai. 2021. Multi-label image

classification with contrastive learning. arXiv preprint arXiv:2107.11626 (2021).
[8] Zhongfen Deng, Hao Peng, Dongxiao He, Jianxin Li, and Philip S Yu. 2021.

HTCInfoMax: A global model for hierarchical text classification via information

maximization. arXiv preprint arXiv:2104.05220 (2021).
[9] Jacob Devlin. 2018. Bert: Pre-training of deep bidirectional transformers for

language understanding. arXiv preprint arXiv:1810.04805 (2018).
[10] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pas-

cal Vincent, and Samy Bengio. 2010. Why Does Unsupervised Pre-training Help

Deep Learning? Journal of Machine Learning Research 11, 19 (2010), 625–660.

http://jmlr.org/papers/v11/erhan10a.html

[11] Rafael S Gonçalves, Matthew Horridge, Rui Li, Yu Liu, Mark A Musen, Csongor I

Nyulas, Evelyn Obamos, Dhananjay Shrouty, and David Temple. 2019. Use of

owl and semantic web technologies at pinterest. In The Semantic Web–ISWC 2019:
18th International Semantic Web Conference, Auckland, New Zealand, October
26–30, 2019, Proceedings, Part II 18. Springer, 418–435.

[12] Siddharth Gopal and Yiming Yang. 2013. Recursive regularization for large-scale

classification with hierarchical and graphical dependencies. In Proceedings of
the 19th ACM SIGKDD international conference on Knowledge discovery and data
mining. 257–265.

[13] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre

Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan

Guo, Mohammad Gheshlaghi Azar, et al. 2020. Bootstrap your own latent-a new

approach to self-supervised learning. Advances in neural information processing
systems 33 (2020), 21271–21284.

[14] Michael Gutmann and Aapo Hyvärinen. 2010. Noise-contrastive estimation:

A new estimation principle for unnormalized statistical models. In Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statistics
(Proceedings of Machine Learning Research, Vol. 9), Yee Whye Teh and Mike

Titterington (Eds.). PMLR, Chia Laguna Resort, Sardinia, Italy, 297–304. https:

//proceedings.mlr.press/v9/gutmann10a.html

[15] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-

mentum contrast for unsupervised visual representation learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 9729–9738.

[16] Wei Huang, Enhong Chen, Qi Liu, Yuying Chen, Zai Huang, Yang Liu, Zhou Zhao,

Dan Zhang, and Shijin Wang. 2019. Hierarchical multi-label text classification:

An attention-based recurrent network approach. In Proceedings of the 28th ACM
international conference on information and knowledge management. 1051–1060.

http://jmlr.org/papers/v11/erhan10a.html
https://proceedings.mlr.press/v9/gutmann10a.html
https://proceedings.mlr.press/v9/gutmann10a.html

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jiawei Guo, Yang Xiao, Weipeng Huang, and Guangyuan Piao

[17] WeipengHuang, Guangyuan Piao, Raul Moreno, and Neil J. Hurley. 2020. Partially

Observable Markov Decision Process Modelling for Assessing Hierarchies. In

Asian Conference on Machine Learning. PMLR, 641–656.

[18] Prannay Khosla, Piotr Teterwak, ChenWang, Aaron Sarna, Yonglong Tian, Phillip

Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised contrastive

learning. Advances in neural information processing systems 33 (2020), 18661–
18673.

[19] Kamran Kowsari, Donald E Brown, Mojtaba Heidarysafa, Kiana Jafari Meimandi,

Matthew S Gerber, and Laura E Barnes. 2017. Hdltex: Hierarchical deep learning

for text classification. In 2017 16th IEEE international conference on machine
learning and applications (ICMLA). IEEE, 364–371.

[20] David D Lewis, Yiming Yang, Tony Russell-Rose, and Fan Li. 2004. Rcv1: A

new benchmark collection for text categorization research. Journal of machine
learning research 5, Apr (2004), 361–397.

[21] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. 2017.

Focal Loss for Dense Object Detection. In 2017 IEEE International Conference
on Computer Vision (ICCV). IEEE Computer Society, Los Alamitos, CA, USA,

2999–3007. doi:10.1109/ICCV.2017.324

[22] MA Liu, Jennifer Lewis Priestley Ph D, et al. 2018. A comparison of machine

learning algorithms for prediction of past due service in commercial credit.

(2018).

[23] Yuning Mao, Jingjing Tian, Jiawei Han, and Xiang Ren. 2019. Hierarchical text

classification with reinforced label assignment. arXiv preprint arXiv:1908.10419
(2019).

[24] Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard

Socher, Xavier Amatriain, and Jianfeng Gao. 2024. Large language models: A

survey. arXiv preprint arXiv:2402.06196 (2024).
[25] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning

with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).
[26] Kervy Rivas Rojas, Gina Bustamante, Arturo Oncevay, and Marco A Sobrevilla

Cabezudo. 2020. Efficient strategies for hierarchical text classification: External

knowledge and auxiliary tasks. arXiv preprint arXiv:2005.02473 (2020).
[27] Ruslan Salakhutdinov and Geoff Hinton. 2007. Learning a nonlinear embedding

by preserving class neighbourhood structure. InArtificial intelligence and statistics.
PMLR, 412–419.

[28] Kazuya Shimura, Jiyi Li, and Fumiyo Fukumoto. 2018. HFT-CNN: Learning

hierarchical category structure for multi-label short text categorization. In Pro-
ceedings of the 2018 conference on empirical methods in natural language processing.
811–816.

[29] Carlos N Silla and Alex A Freitas. 2011. A survey of hierarchical classification

across different application domains. Data mining and knowledge discovery 22

(2011), 31–72.

[30] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng

Liu. 2024. Roformer: Enhanced transformer with rotary position embedding.

Neurocomputing 568 (2024), 127063.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. Advances in Neural Information Processing Systems (2017).
[32] Ran Wang, Xinyu Dai, et al. 2022. Contrastive learning-enhanced nearest neigh-

bor mechanism for multi-label text classification. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers).
672–679.

[33] TongzhouWang and Phillip Isola. 2020. Understanding contrastive representation

learning through alignment and uniformity on the hypersphere. In International
conference on machine learning. PMLR, 9929–9939.

[34] Zihan Wang, Peiyi Wang, Lianzhe Huang, Xin Sun, and Houfeng Wang. 2022.

Incorporating hierarchy into text encoder: a contrastive learning approach for

hierarchical text classification. arXiv preprint arXiv:2203.03825 (2022).
[35] Jonatas Wehrmann, Ricardo Cerri, and Rodrigo Barros. 2018. Hierarchical multi-

label classification networks. In International conference on machine learning.
PMLR, 5075–5084.

[36] Linli Xu, Sijie Teng, Ruoyu Zhao, Junliang Guo, Chi Xiao, Deqiang Jiang, and

Bo Ren. 2021. Hierarchical multi-label text classification with horizontal and

vertical category correlations. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing. 2459–2468.

[37] Ronghui You, Zihan Zhang, Ziye Wang, Suyang Dai, Hiroshi Mamitsuka, and

Shanfeng Zhu. 2019. Attentionxml: Label tree-based attention-aware deep model

for high-performance extreme multi-label text classification. Advances in neural
information processing systems 32 (2019).

[38] Fattane Zarrinkalam, Stefano Faralli, Guangyuan Piao, Ebrahim Bagheri, et al.

2020. Extracting, mining and predicting users’ interests from social media. Foun-
dations and Trends® in Information Retrieval 14, 5 (2020), 445–617.

[39] Pingyue Zhang and Mengyue Wu. 2024. Multi-Label Supervised Contrastive

Learning. Proceedings of the AAAI Conference on Artificial Intelligence 38, 15 (Mar.

2024), 16786–16793. doi:10.1609/aaai.v38i15.29619

[40] Shu Zhang, Ran Xu, Caiming Xiong, and Chetan Ramaiah. 2022. Use all the labels:

A hierarchical multi-label contrastive learning framework. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 16660–16669.

[41] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,

Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey

of large language models. arXiv preprint arXiv:2303.18223 (2023).
[42] Jie Zhou, Chunping Ma, Dingkun Long, Guangwei Xu, Ning Ding, Haoyu Zhang,

Pengjun Xie, and Gongshen Liu. 2020. Hierarchy-aware global model for hi-

erarchical text classification. In Proceedings of the 58th annual meeting of the
association for computational linguistics. 1106–1117.

[43] He Zhu, Junran Wu, Ruomei Liu, Yue Hou, Ze Yuan, Shangzhe Li, Yicheng

Pan, and Ke Xu. 2024. HILL: Hierarchy-aware Information Lossless Contrastive

Learning for Hierarchical Text Classification. arXiv preprint arXiv:2403.17307
(2024).

A Implementation Details

We now specify the implementation of the contrastive learning.

As discussed in Section 4, we sample positive and negative in-

stances for anchor samples at each level. To ensure sufficient con-

trast among samples, we repeated this process multiple times. For

the app dataset, we respectively performed this sampling process

10, 20, and 50 times for level 1, 2, and 3. For the RCV1 dataset, we

respectively performed the sampling process 10, 20, and 50 times

for level 1, 2, and 3. Since there is only one label at level 4, we would

not conduct sampling at this level. At last, for the WOS dataset, we

respectively repeated the sampling process 5 and 20 times, for level

1 and 2.

We learn that the number of samples per label, at higher hierar-

chical levels, is less than that at lower levels. Thus, the sampling

multiples are correspondingly higher. After repeating the sampling

for each anchor sample multiple times, we obtain a sufficient num-

ber of contrastive samples. We used the Adam optimizer with a

mini-batch size of 8 and a learning rate of 1e-5 for all configurations.

The learning rate decayed based on the number of training batches,

reducing by a factor of 0.8 every 4,000 batches. Additionally, we

set the scaling parameter 𝛼 in the contrastive loss function to 0.1.

As mentioned above, we repeated the same sampling strategy for

each batch multiple times, we indeed increased the number of com-

parisons. Consequently, we observed that 1 epoch for the HMCL is

always sufficient to perform.

With regard to the base text encoder, we applied RoFormer
6
for

the app data, while BERT
7
was employed for both RCV1 and WOS

datasets. The text encoder trained through the HMCL was used in

the followed classification tasks. We applied the Adam optimizer

with a batch size of 8 for all datasets. For all classification settings,

we trained the model for 20 epochs and decayed the learning rate by

a factor of 0.8 every two epochs. Regarding the app data, we set the

initial learning rate to 5e-3. For the RCV1 and WOS datasets, we set

the initial learning rate to 1e-4. The classification experiments for

the public datasets were repeated 5 times under each configuration.

The hyperparameters for the focal loss were fixed to the default

values 𝛼 = 0.25, 𝛾 = 2. The scaling factor for the path regularization

𝜆 was fixed to a simple choice of 1 under all configurations. When

gauging the labels from the prediction logits, we applied the thresh-

old of 0.5 to decide if a label 𝑣 is considered active for 𝑥𝑖 . That is,

given any data index 𝑖 and label 𝑣 , we defined

𝑦𝑖𝑣 =

{
1 𝑧𝑖𝑣 ≥ 0.5

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.

6
https://huggingface.co/junnyu/roformer_chinese_base

7
https://huggingface.co/google-bert/bert-base-cased

https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1609/aaai.v38i15.29619
https://huggingface.co/junnyu/roformer_chinese_base
https://huggingface.co/google-bert/bert-base-cased

Text-Based Hierarchical Multilabel Classification for Mobile Applications KDD ’25, August 3–7, 2025, Toronto, ON, Canada

RoFormer RoFormer + HMCL

1.25

1.00

0.75

0.50

0.25

0.00
Uniformity

RoFormer RoFormer + HMCL
0.0

0.2

0.4

0.6

0.8

Alignment

Figure 5: Improvement of app embedding quality withHMCL

(lower values indicate better performance for both metrics)

Our experiments were conducted on a server equipped with

the Xeon(R) Platinum 8372HC CPU with 3.40GHz, 8 NVIDIA A10

Tensor Core GPUs, and 360GB of RAM. The floating-point precision

was set to BF16 (Brain Floating Point 16 bits).

B Uniformity and Alignment of App

Embeddings with and without the HMCL

Here, we examine two important properties, uniformity and align-
ment, to assess the quality of app embeddings without and with

HMCL. Uniformity measures how well the embeddings are spread

out over the representation space, while alignment measures how

close embeddings of positive pairs are in the representation space.

They are formally defined as follows.

The uniformity property favors embeddings that are roughly

uniformly distributed on the unit hypersphere, preserving as much

information of the data as possible [33]. For randomly sampled

pairs (𝑥, y) with normalized embeddings s𝑥 , s𝑦 , the uniformity loss

is formulated as:

L
uniform

= logE(𝑥,y)∼𝑝data
[
exp

{
𝜏
(
s⊤𝑥 s𝑦 − 1

)}]
(17)

where 𝜏 > 0 is the temperature hyperparameter, 𝑝
data

is the data

distribution, and s⊤𝑥 s𝑦 − 1 = −(1 − s⊤𝑥 s𝑦) represents the negative
cosine distance between s𝑥 and s𝑦 .

The alignment property prefers that two samples forming a posi-

tive pair should have embeddings that are close each other, and thus

be (mostly) invariant to irrelevant noise factors [33]. For positive

pairs (𝑥, 𝑥+) with normalized embeddings s, s+, the alignment loss

is defined as:

L
align

=

𝐿∑︁
𝑙=1

E(𝑥,𝑥+)∼𝑝 (𝑙)
pos

[
1 − s⊤s+

]
(18)

where s⊤s+ represents cosine similarity and 1 − s⊤s+ denotes the
corresponding cosine distance. Apart from that, 𝑝

(𝑙)
pos

denotes the

distribution of positive pairs at level 𝑙 , where the two samples 𝑥

and 𝑥+ share at least one common label at that level.

For both metrics, lower values indicate better performance. As

shown in Fig. 5, uniformity improves (decreases from -0.337 to

-1.390), and alignment also improves (decreases from 0.858 to 0.602),

indicating enhanced app embedding quality with HMCL.

	Abstract
	1 Introduction
	2 Related Work
	3 Model and Implementations
	3.1 Notation
	3.2 Data Encoding
	3.3 Hierarchical Multilabel Classification Network

	4 Hierarchical Multilabel Contrastive Learning
	4.1 Positive Sampling
	4.2 Negative Sampling Strategies
	4.3 Contrastive Loss

	5 Experiments
	5.1 Experimental Settings
	5.2 Comparing the Negative Sampling Strategies
	5.3 Results for the App Data
	5.4 Results for the Public Data
	5.5 Deployment and Impact

	6 Conclusion
	Acknowledgments
	References
	A Implementation Details
	B Uniformity and Alignment of App Embeddings with and without the HMCL

